Poincaré problem with measurable data for semilinear Poisson equation in the plane

We study the Poincaré boundary-value problem with measurable in terms of the logarithmic capacity boundary data for semilinear Poisson equations defined either in the unit disk or in Jordan domains with quasihyperbolic boundary condition. The solvability theorems as well as their applications to s...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2022
Автори: Gutlyanskiĭ, V.Ya., Nesmelova, O.V., Ryazanov, V.I., Yefimushkin, A.S.
Формат: Стаття
Мова:English
Опубліковано: Видавничий дім "Академперіодика" НАН України 2022
Назва видання:Доповіді НАН України
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/187169
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Poincaré problem with measurable data for semilinear Poisson equation in the plane / V.Ya. Gutlyanskiĭ, O.V. Nesmelova, V.I. Ryazanov, A.S. Yefimushkin // Доповіді Національної академії наук України. — 2022. — № 4. — С. 10-18. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-187169
record_format dspace
spelling irk-123456789-1871692022-12-09T01:26:34Z Poincaré problem with measurable data for semilinear Poisson equation in the plane Gutlyanskiĭ, V.Ya. Nesmelova, O.V. Ryazanov, V.I. Yefimushkin, A.S. Математика We study the Poincaré boundary-value problem with measurable in terms of the logarithmic capacity boundary data for semilinear Poisson equations defined either in the unit disk or in Jordan domains with quasihyperbolic boundary condition. The solvability theorems as well as their applications to some semilinear equations, modelling diffusion with absorption, plasma states and stationary burning, are given. Крайова задача Гільберта належить до найважливіших з огляду на її численні застосування, зокрема, до крайових задач Діріхле, Пуанкаре та Неймана в гідромеханіці. Перший підхід до її розв’язання був запропонований самим Гільбертом і заснований на теорії сингулярних інтегральних рівнянь. На цьому шляху доведено існування її розв’язків для неперервних за Гельдером граничних даних. Лузін уперше встановив існування розв’язків задачі Діріхле при довільних вимірних даних для гармонічних функцій в одиничному крузі в термінах кутових (недотичних) границь м. в. на одиничному колі. Раніше нами були сформульовані теореми існування розв’язків крайової задачі Гільберта при довільних вимірних даних для узагальнених гармонічних функцій з джерелами. Знайдені розв’язки не були класичними, оскільки наш підхід ґрунтувався на інтерпретації граничних значень у сенсі кутових (недотичних) границь, що стало традиційним інструментом геометричної теорії функцій, але не PDE. Представлена стаття містить аналогічні теореми існування розв’язків задачі Пуанкаре про похідні за напрямками на межі і, зокрема, задачі Неймана при довільних граничних даних вимірних відносно логарифмічної ємності уздовж недотичних шляхів для напівлінійних рівнянь Пуассона. Наведено застосування цих результатів до деяких напівлінійних рівнянь математичної фізики, що моделюють різні фізичні процеси, такі як дифузія з абсорбцією, процес стаціонарного горіння та стани плазми. 2022 Article Poincaré problem with measurable data for semilinear Poisson equation in the plane / V.Ya. Gutlyanskiĭ, O.V. Nesmelova, V.I. Ryazanov, A.S. Yefimushkin // Доповіді Національної академії наук України. — 2022. — № 4. — С. 10-18. — Бібліогр.: 11 назв. — англ. 1025-6415 DOI: doi.org/10.15407/dopovidi2022.04.010 http://dspace.nbuv.gov.ua/handle/123456789/187169 517.5 en Доповіді НАН України Видавничий дім "Академперіодика" НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Математика
Математика
spellingShingle Математика
Математика
Gutlyanskiĭ, V.Ya.
Nesmelova, O.V.
Ryazanov, V.I.
Yefimushkin, A.S.
Poincaré problem with measurable data for semilinear Poisson equation in the plane
Доповіді НАН України
description We study the Poincaré boundary-value problem with measurable in terms of the logarithmic capacity boundary data for semilinear Poisson equations defined either in the unit disk or in Jordan domains with quasihyperbolic boundary condition. The solvability theorems as well as their applications to some semilinear equations, modelling diffusion with absorption, plasma states and stationary burning, are given.
format Article
author Gutlyanskiĭ, V.Ya.
Nesmelova, O.V.
Ryazanov, V.I.
Yefimushkin, A.S.
author_facet Gutlyanskiĭ, V.Ya.
Nesmelova, O.V.
Ryazanov, V.I.
Yefimushkin, A.S.
author_sort Gutlyanskiĭ, V.Ya.
title Poincaré problem with measurable data for semilinear Poisson equation in the plane
title_short Poincaré problem with measurable data for semilinear Poisson equation in the plane
title_full Poincaré problem with measurable data for semilinear Poisson equation in the plane
title_fullStr Poincaré problem with measurable data for semilinear Poisson equation in the plane
title_full_unstemmed Poincaré problem with measurable data for semilinear Poisson equation in the plane
title_sort poincaré problem with measurable data for semilinear poisson equation in the plane
publisher Видавничий дім "Академперіодика" НАН України
publishDate 2022
topic_facet Математика
url http://dspace.nbuv.gov.ua/handle/123456789/187169
citation_txt Poincaré problem with measurable data for semilinear Poisson equation in the plane / V.Ya. Gutlyanskiĭ, O.V. Nesmelova, V.I. Ryazanov, A.S. Yefimushkin // Доповіді Національної академії наук України. — 2022. — № 4. — С. 10-18. — Бібліогр.: 11 назв. — англ.
series Доповіді НАН України
work_keys_str_mv AT gutlyanskiivya poincareproblemwithmeasurabledataforsemilinearpoissonequationintheplane
AT nesmelovaov poincareproblemwithmeasurabledataforsemilinearpoissonequationintheplane
AT ryazanovvi poincareproblemwithmeasurabledataforsemilinearpoissonequationintheplane
AT yefimushkinas poincareproblemwithmeasurabledataforsemilinearpoissonequationintheplane
first_indexed 2023-10-18T23:05:27Z
last_indexed 2023-10-18T23:05:27Z
_version_ 1796157222754975744