A new projective exact penalty function for a general constrained optimization

A new projective exact penalty function method is proposed for the equivalent reduction of constrained optimization problems to unconstrained ones. In the method, the original objective function is extended to infeasible points by summing its value at the projection of an infeasible point on the f...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2022
Автор: Norkin, V.I.
Формат: Стаття
Мова:English
Опубліковано: Видавничий дім "Академперіодика" НАН України 2022
Назва видання:Доповіді НАН України
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/187186
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A new projective exact penalty function for a general constrained optimization / V.I. Norkin // Доповіді Національної академії наук України. — 2022. — № 5. — С. 23-29. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-187186
record_format dspace
spelling irk-123456789-1871862022-12-11T01:26:19Z A new projective exact penalty function for a general constrained optimization Norkin, V.I. Інформатика та кібернетика A new projective exact penalty function method is proposed for the equivalent reduction of constrained optimization problems to unconstrained ones. In the method, the original objective function is extended to infeasible points by summing its value at the projection of an infeasible point on the feasible set with the distance to the set. The equivalence means that local and global minimums of the problems coincide. Nonconvex sets with multivalued projections are admitted, and the objective function may be lower semicontinuous. The particular case of convex problems is included. So the method does not assume the existence of the objective function outside the allowable area and does not require the selection of the penalty coefficient. Класичний підхід до точного зведення задачі умовної оптимізації до задачі без обмежень полягає в додаванні до цільової функції деякого негладкого штрафного члена за порушення обмежень [Eremin (1966, 1967), Zangwill (1967)]. Проблема цього методу полягає у виборі правильного штрафного множника. У цій роботі ми пропонуємо нову проективну точну штрафну функцію для еквівалентного зведення задач оптимізації з обмеженнями до задач без обмежень. Еквівалентність означає, що локальні і глобальні мінімуми задач і значення цільової функції на відповідних мінімумах збігаються. У запропонованому методі вихідна цільова функція поширюється на недопустимі точки шляхом підсумовування її значення в проекції недопустимої точки на допустиму множину та відстані до множини. Допускаються багатозначні проекції, а цільова функція може бути напівнеперервною знизу. Розглядається окремий випадок опуклих задач. Таким чином, метод не передбачає існування цільової функції за межами допустимої області та не вимагає підбору штрафного коефіцієнта. Метод був запропонований у роботі [Норкін (2020)] (і пізніше вивчений у [Galavan et al. (2021)]) був мотивований застосуванням методу згладжування для умовної глобальної оптимізації. В даній статті ми обґрунтовуємо його для загальних опуклих і неопуклих задач оптимізації з обмеженнями. 2022 Article A new projective exact penalty function for a general constrained optimization / V.I. Norkin // Доповіді Національної академії наук України. — 2022. — № 5. — С. 23-29. — Бібліогр.: 14 назв. — англ. 1025-6415 DOI: doi.org/10.15407/dopovidi2022.04.023 http://dspace.nbuv.gov.ua/handle/123456789/187186 519.7 en Доповіді НАН України Видавничий дім "Академперіодика" НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Інформатика та кібернетика
Інформатика та кібернетика
spellingShingle Інформатика та кібернетика
Інформатика та кібернетика
Norkin, V.I.
A new projective exact penalty function for a general constrained optimization
Доповіді НАН України
description A new projective exact penalty function method is proposed for the equivalent reduction of constrained optimization problems to unconstrained ones. In the method, the original objective function is extended to infeasible points by summing its value at the projection of an infeasible point on the feasible set with the distance to the set. The equivalence means that local and global minimums of the problems coincide. Nonconvex sets with multivalued projections are admitted, and the objective function may be lower semicontinuous. The particular case of convex problems is included. So the method does not assume the existence of the objective function outside the allowable area and does not require the selection of the penalty coefficient.
format Article
author Norkin, V.I.
author_facet Norkin, V.I.
author_sort Norkin, V.I.
title A new projective exact penalty function for a general constrained optimization
title_short A new projective exact penalty function for a general constrained optimization
title_full A new projective exact penalty function for a general constrained optimization
title_fullStr A new projective exact penalty function for a general constrained optimization
title_full_unstemmed A new projective exact penalty function for a general constrained optimization
title_sort new projective exact penalty function for a general constrained optimization
publisher Видавничий дім "Академперіодика" НАН України
publishDate 2022
topic_facet Інформатика та кібернетика
url http://dspace.nbuv.gov.ua/handle/123456789/187186
citation_txt A new projective exact penalty function for a general constrained optimization / V.I. Norkin // Доповіді Національної академії наук України. — 2022. — № 5. — С. 23-29. — Бібліогр.: 14 назв. — англ.
series Доповіді НАН України
work_keys_str_mv AT norkinvi anewprojectiveexactpenaltyfunctionforageneralconstrainedoptimization
AT norkinvi newprojectiveexactpenaltyfunctionforageneralconstrainedoptimization
first_indexed 2023-10-18T23:05:30Z
last_indexed 2023-10-18T23:05:30Z
_version_ 1796157224565866496