Модель автоматичної адаптації діагностичної нейромережевої структури до розпізнавання випадкових об’єктів за умов апріорної невизначеності множини класів

В роботі запропоновано підхід до навчання та автоматичної адаптації діагностичної нейромережевої структури в умовах апріорної невизначеності множини класів, що підлягають розпізнаванню. Цей підхід реалізовано на основі визначення моменту розладки випадкового часового ряду із використанням авторегрес...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автори: Шараєвський, Г.І., Шаповалова, С.І.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут кібернетики ім. В.М. Глушкова НАН України 2009
Назва видання:Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/18759
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Модель автоматичної адаптації діагностичної нейромережевої структури до розпізнавання випадкових об’єктів за умов апріорної невизначеності множини класів / Г.І. Шараєвський, С.І. Шаповалова // Математичне та комп'ютерне моделювання. Серія: Технічні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2009. — Вип. 2. — С. 165-173. — Бібліогр.: 8 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:В роботі запропоновано підхід до навчання та автоматичної адаптації діагностичної нейромережевої структури в умовах апріорної невизначеності множини класів, що підлягають розпізнаванню. Цей підхід реалізовано на основі визначення моменту розладки випадкового часового ряду із використанням авторегресійної моделі.