On certain homological invariant and its relation with Poincaré duality pairs

Let G be a group, S = {Sᵢ, i ∊ I} a non empty family of (not necessarily distinct) subgroups of infinite index in G and M a Z₂G-module. In [4] the authors defined a homological invariant E*(G, S,M), which is “dual” to the cohomological invariant E(G, S,M), defined in [1]. In this paper we present a...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Andrade, M.G.C., Gazon, A.B., Lima A.F.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2018
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/188357
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On certain homological invariant and its relation with Poincaré duality pairs / M.G.C. Andrade, A.B. Gazon, A.F. Lima // Algebra and Discrete Mathematics. — 2018. — Vol. 25, № 2. — С. 177–187. — Бібліогр.: 7 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-188357
record_format dspace
spelling irk-123456789-1883572023-02-26T01:26:51Z On certain homological invariant and its relation with Poincaré duality pairs Andrade, M.G.C. Gazon, A.B. Lima A.F. Let G be a group, S = {Sᵢ, i ∊ I} a non empty family of (not necessarily distinct) subgroups of infinite index in G and M a Z₂G-module. In [4] the authors defined a homological invariant E*(G, S,M), which is “dual” to the cohomological invariant E(G, S,M), defined in [1]. In this paper we present a more general treatment of the invariant E*(G, S,M) obtaining results and properties, under a homological point of view, which are dual to those obtained by Andrade and Fanti with the invariant E(G, S,M). We analyze, through the invariant E*(G, S,M), properties about groups that satisfy certain finiteness conditions such as Poincaré duality for groups and pairs. 2018 Article On certain homological invariant and its relation with Poincaré duality pairs / M.G.C. Andrade, A.B. Gazon, A.F. Lima // Algebra and Discrete Mathematics. — 2018. — Vol. 25, № 2. — С. 177–187. — Бібліогр.: 7 назв. — англ. 1726-3255 2010 MSC: 20J05, 20J06, 57P10 http://dspace.nbuv.gov.ua/handle/123456789/188357 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let G be a group, S = {Sᵢ, i ∊ I} a non empty family of (not necessarily distinct) subgroups of infinite index in G and M a Z₂G-module. In [4] the authors defined a homological invariant E*(G, S,M), which is “dual” to the cohomological invariant E(G, S,M), defined in [1]. In this paper we present a more general treatment of the invariant E*(G, S,M) obtaining results and properties, under a homological point of view, which are dual to those obtained by Andrade and Fanti with the invariant E(G, S,M). We analyze, through the invariant E*(G, S,M), properties about groups that satisfy certain finiteness conditions such as Poincaré duality for groups and pairs.
format Article
author Andrade, M.G.C.
Gazon, A.B.
Lima A.F.
spellingShingle Andrade, M.G.C.
Gazon, A.B.
Lima A.F.
On certain homological invariant and its relation with Poincaré duality pairs
Algebra and Discrete Mathematics
author_facet Andrade, M.G.C.
Gazon, A.B.
Lima A.F.
author_sort Andrade, M.G.C.
title On certain homological invariant and its relation with Poincaré duality pairs
title_short On certain homological invariant and its relation with Poincaré duality pairs
title_full On certain homological invariant and its relation with Poincaré duality pairs
title_fullStr On certain homological invariant and its relation with Poincaré duality pairs
title_full_unstemmed On certain homological invariant and its relation with Poincaré duality pairs
title_sort on certain homological invariant and its relation with poincaré duality pairs
publisher Інститут прикладної математики і механіки НАН України
publishDate 2018
url http://dspace.nbuv.gov.ua/handle/123456789/188357
citation_txt On certain homological invariant and its relation with Poincaré duality pairs / M.G.C. Andrade, A.B. Gazon, A.F. Lima // Algebra and Discrete Mathematics. — 2018. — Vol. 25, № 2. — С. 177–187. — Бібліогр.: 7 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT andrademgc oncertainhomologicalinvariantanditsrelationwithpoincaredualitypairs
AT gazonab oncertainhomologicalinvariantanditsrelationwithpoincaredualitypairs
AT limaaf oncertainhomologicalinvariantanditsrelationwithpoincaredualitypairs
first_indexed 2023-10-18T23:08:11Z
last_indexed 2023-10-18T23:08:11Z
_version_ 1796157340976676864