On dual Rickart modules and weak dual Rickart modules
Let R be a ring. A right R-module M is called d-Rickart if for every endomorphism φ of M, φ(M) is a direct summand of M and it is called wd-Rickart if for every nonzero endomorphism φ of M, φ(M) contains a nonzero direct summand of M. We begin with some basic properties of (w)d-Rickart modules. Then...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2018
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/188359 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On dual Rickart modules and weak dual Rickart modules / D. Keskin Tütüncü, N. Orhan Ertas, R. Tribak // Algebra and Discrete Mathematics. — 2018. — Vol. 25, № 2. — С. 200–214 . — Бібліогр.: 15 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Let R be a ring. A right R-module M is called d-Rickart if for every endomorphism φ of M, φ(M) is a direct summand of M and it is called wd-Rickart if for every nonzero endomorphism φ of M, φ(M) contains a nonzero direct summand of M. We begin with some basic properties of (w)d-Rickart modules. Then we study direct sums of (w)d-Rickart modules and the class of rings for which every finitely generated module is (w)d-Rickart. We conclude by some structure results. |
---|