2025-02-23T00:08:34-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-188378%22&qt=morelikethis&rows=5
2025-02-23T00:08:34-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-188378%22&qt=morelikethis&rows=5
2025-02-23T00:08:34-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T00:08:34-05:00 DEBUG: Deserialized SOLR response

On the saturations of submodules

Let R ⊆ S be a ring extension, and let A be an R-submodule of S. The saturation of A (in S) by τ is set A[τ] = {x ∈ S : tx ∈ A for some t ∈ τ}, where τ is a multiplicative subset of R. We study properties of saturations of R-submodules of S. We use this notion of saturation to characterize star oper...

Full description

Saved in:
Bibliographic Details
Main Authors: Paudel, L., Tchamna, S.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2018
Series:Algebra and Discrete Mathematics
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/188378
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let R ⊆ S be a ring extension, and let A be an R-submodule of S. The saturation of A (in S) by τ is set A[τ] = {x ∈ S : tx ∈ A for some t ∈ τ}, where τ is a multiplicative subset of R. We study properties of saturations of R-submodules of S. We use this notion of saturation to characterize star operations ⋆ on ring extensions R ⊆ S satisfying the relation (A ∩ B)⋆ = A⋆ ∩ B⋆ whenever A and B are two R-submodules of S such that AS = BS = S.