Type conditions of stable range for identification of qualitative generalized classes of rings

This article deals mostly with the following question: when the classical ring of quotients of a commutative ring is a ring of stable range 1? We introduce the concepts of a ring of (von Neumann) regular range 1, a ring of semihereditary range 1, a ring of regular range 1, a semihereditary local rin...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Zabavsky, B.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2018
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/188381
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Type conditions of stable range for identification of qualitative generalized classes of rings / B.V. Zabavsky // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 1. — С. 144–152 . — Бібліогр.: 6 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:This article deals mostly with the following question: when the classical ring of quotients of a commutative ring is a ring of stable range 1? We introduce the concepts of a ring of (von Neumann) regular range 1, a ring of semihereditary range 1, a ring of regular range 1, a semihereditary local ring, a regular local ring. We find relationships between the introduced classes of rings and known ones, in particular, it is established that a commutative indecomposable almost clean ring is a regular local ring. Any commutative ring of idempotent regular range 1 is an almost clean ring. It is shown that any commutative indecomposable almost clean Bezout ring is an Hermite ring, any commutative semihereditary ring is a ring of idempotent regular range 1. The classical ring of quotients of a commutative Bezout ring QCl(R) is a (von Neumann) regular local ring if and only if R is a commutative semihereditary local ring.