Endomorphisms of Cayley digraphs of rectangular groups

Let Cay(S,A) denote the Cayley digraph of the semigroup S with respect to the set A, where A is any subset of S. The function f : Cay(S,A) → Cay(S,A) is called an endomorphism of Cay(S,A) if for each (x, y) ∈ E(Cay(S,A)) implies (f(x), f(y)) ∈ E(Cay(S,A)) as well, where E(Cay(S,A)) is an arc set of...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Arworn, S., Gyurov, B., Nupo, N., Panma, S.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2018
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/188408
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Endomorphisms of Cayley digraphs of rectangular groups / S. Arworn, B. Gyurov, N. Nupo, S. Panma // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 2. — С. 153–169. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-188408
record_format dspace
spelling irk-123456789-1884082023-02-28T01:26:51Z Endomorphisms of Cayley digraphs of rectangular groups Arworn, S. Gyurov, B. Nupo, N. Panma, S. Let Cay(S,A) denote the Cayley digraph of the semigroup S with respect to the set A, where A is any subset of S. The function f : Cay(S,A) → Cay(S,A) is called an endomorphism of Cay(S,A) if for each (x, y) ∈ E(Cay(S,A)) implies (f(x), f(y)) ∈ E(Cay(S,A)) as well, where E(Cay(S,A)) is an arc set of Cay(S,A). We characterize the endomorphisms of Cayley digraphs of rectangular groups G × L × R, where the connection sets are in the form of A = K × P × T. 2018 Article Endomorphisms of Cayley digraphs of rectangular groups / S. Arworn, B. Gyurov, N. Nupo, S. Panma // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 2. — С. 153–169. — Бібліогр.: 18 назв. — англ. 1726-3255 2010 MSC: 05C20, 05C25, 20K30, 20M99. http://dspace.nbuv.gov.ua/handle/123456789/188408 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let Cay(S,A) denote the Cayley digraph of the semigroup S with respect to the set A, where A is any subset of S. The function f : Cay(S,A) → Cay(S,A) is called an endomorphism of Cay(S,A) if for each (x, y) ∈ E(Cay(S,A)) implies (f(x), f(y)) ∈ E(Cay(S,A)) as well, where E(Cay(S,A)) is an arc set of Cay(S,A). We characterize the endomorphisms of Cayley digraphs of rectangular groups G × L × R, where the connection sets are in the form of A = K × P × T.
format Article
author Arworn, S.
Gyurov, B.
Nupo, N.
Panma, S.
spellingShingle Arworn, S.
Gyurov, B.
Nupo, N.
Panma, S.
Endomorphisms of Cayley digraphs of rectangular groups
Algebra and Discrete Mathematics
author_facet Arworn, S.
Gyurov, B.
Nupo, N.
Panma, S.
author_sort Arworn, S.
title Endomorphisms of Cayley digraphs of rectangular groups
title_short Endomorphisms of Cayley digraphs of rectangular groups
title_full Endomorphisms of Cayley digraphs of rectangular groups
title_fullStr Endomorphisms of Cayley digraphs of rectangular groups
title_full_unstemmed Endomorphisms of Cayley digraphs of rectangular groups
title_sort endomorphisms of cayley digraphs of rectangular groups
publisher Інститут прикладної математики і механіки НАН України
publishDate 2018
url http://dspace.nbuv.gov.ua/handle/123456789/188408
citation_txt Endomorphisms of Cayley digraphs of rectangular groups / S. Arworn, B. Gyurov, N. Nupo, S. Panma // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 2. — С. 153–169. — Бібліогр.: 18 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT arworns endomorphismsofcayleydigraphsofrectangulargroups
AT gyurovb endomorphismsofcayleydigraphsofrectangulargroups
AT nupon endomorphismsofcayleydigraphsofrectangulargroups
AT panmas endomorphismsofcayleydigraphsofrectangulargroups
first_indexed 2023-10-18T23:08:17Z
last_indexed 2023-10-18T23:08:17Z
_version_ 1796157345723580416