On a graph isomorphic to its intersection graph: self-graphoidal graphs
A graph G is called a graphoidal graph if there exists a graph H and a graphoidal cover ψ of H such that G ≅ Ω (H, ψ ). Then the graph G is said to be self-graphoidal if it is isomorphic to one of its graphoidal graphs. In this paper, we have examined the existence of a few self-graphoidal graphs fr...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2018
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/188411 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On a graph isomorphic to its intersection graph: self-graphoidal graphs / P.K. Das, K.R. Singh // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 2. — С. 247–255. — Бібліогр.: 11назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-188411 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1884112023-03-01T01:26:57Z On a graph isomorphic to its intersection graph: self-graphoidal graphs Das, P.K. Singh, K.R. A graph G is called a graphoidal graph if there exists a graph H and a graphoidal cover ψ of H such that G ≅ Ω (H, ψ ). Then the graph G is said to be self-graphoidal if it is isomorphic to one of its graphoidal graphs. In this paper, we have examined the existence of a few self-graphoidal graphs from path length sequence of a graphoidal cover and obtained new results on self-graphoidal graphs. 2018 Article On a graph isomorphic to its intersection graph: self-graphoidal graphs / P.K. Das, K.R. Singh // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 2. — С. 247–255. — Бібліогр.: 11назв. — англ. 1726-3255 2010 MSC: 05C38, 05C75. http://dspace.nbuv.gov.ua/handle/123456789/188411 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A graph G is called a graphoidal graph if there exists a graph H and a graphoidal cover ψ of H such that G ≅ Ω (H, ψ ). Then the graph G is said to be self-graphoidal if it is isomorphic to one of its graphoidal graphs. In this paper, we have examined the existence of a few self-graphoidal graphs from path length sequence of a graphoidal cover and obtained new results on self-graphoidal graphs. |
format |
Article |
author |
Das, P.K. Singh, K.R. |
spellingShingle |
Das, P.K. Singh, K.R. On a graph isomorphic to its intersection graph: self-graphoidal graphs Algebra and Discrete Mathematics |
author_facet |
Das, P.K. Singh, K.R. |
author_sort |
Das, P.K. |
title |
On a graph isomorphic to its intersection graph: self-graphoidal graphs |
title_short |
On a graph isomorphic to its intersection graph: self-graphoidal graphs |
title_full |
On a graph isomorphic to its intersection graph: self-graphoidal graphs |
title_fullStr |
On a graph isomorphic to its intersection graph: self-graphoidal graphs |
title_full_unstemmed |
On a graph isomorphic to its intersection graph: self-graphoidal graphs |
title_sort |
on a graph isomorphic to its intersection graph: self-graphoidal graphs |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2018 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/188411 |
citation_txt |
On a graph isomorphic to its intersection graph: self-graphoidal graphs / P.K. Das, K.R. Singh // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 2. — С. 247–255. — Бібліогр.: 11назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT daspk onagraphisomorphictoitsintersectiongraphselfgraphoidalgraphs AT singhkr onagraphisomorphictoitsintersectiongraphselfgraphoidalgraphs |
first_indexed |
2023-10-18T23:08:18Z |
last_indexed |
2023-10-18T23:08:18Z |
_version_ |
1796157346040250368 |