On a graph isomorphic to its intersection graph: self-graphoidal graphs

A graph G is called a graphoidal graph if there exists a graph H and a graphoidal cover ψ of H such that G ≅ Ω (H, ψ ). Then the graph G is said to be self-graphoidal if it is isomorphic to one of its graphoidal graphs. In this paper, we have examined the existence of a few self-graphoidal graphs fr...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Das, P.K., Singh, K.R.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2018
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/188411
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On a graph isomorphic to its intersection graph: self-graphoidal graphs / P.K. Das, K.R. Singh // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 2. — С. 247–255. — Бібліогр.: 11назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-188411
record_format dspace
spelling irk-123456789-1884112023-03-01T01:26:57Z On a graph isomorphic to its intersection graph: self-graphoidal graphs Das, P.K. Singh, K.R. A graph G is called a graphoidal graph if there exists a graph H and a graphoidal cover ψ of H such that G ≅ Ω (H, ψ ). Then the graph G is said to be self-graphoidal if it is isomorphic to one of its graphoidal graphs. In this paper, we have examined the existence of a few self-graphoidal graphs from path length sequence of a graphoidal cover and obtained new results on self-graphoidal graphs. 2018 Article On a graph isomorphic to its intersection graph: self-graphoidal graphs / P.K. Das, K.R. Singh // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 2. — С. 247–255. — Бібліогр.: 11назв. — англ. 1726-3255 2010 MSC: 05C38, 05C75. http://dspace.nbuv.gov.ua/handle/123456789/188411 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A graph G is called a graphoidal graph if there exists a graph H and a graphoidal cover ψ of H such that G ≅ Ω (H, ψ ). Then the graph G is said to be self-graphoidal if it is isomorphic to one of its graphoidal graphs. In this paper, we have examined the existence of a few self-graphoidal graphs from path length sequence of a graphoidal cover and obtained new results on self-graphoidal graphs.
format Article
author Das, P.K.
Singh, K.R.
spellingShingle Das, P.K.
Singh, K.R.
On a graph isomorphic to its intersection graph: self-graphoidal graphs
Algebra and Discrete Mathematics
author_facet Das, P.K.
Singh, K.R.
author_sort Das, P.K.
title On a graph isomorphic to its intersection graph: self-graphoidal graphs
title_short On a graph isomorphic to its intersection graph: self-graphoidal graphs
title_full On a graph isomorphic to its intersection graph: self-graphoidal graphs
title_fullStr On a graph isomorphic to its intersection graph: self-graphoidal graphs
title_full_unstemmed On a graph isomorphic to its intersection graph: self-graphoidal graphs
title_sort on a graph isomorphic to its intersection graph: self-graphoidal graphs
publisher Інститут прикладної математики і механіки НАН України
publishDate 2018
url http://dspace.nbuv.gov.ua/handle/123456789/188411
citation_txt On a graph isomorphic to its intersection graph: self-graphoidal graphs / P.K. Das, K.R. Singh // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 2. — С. 247–255. — Бібліогр.: 11назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT daspk onagraphisomorphictoitsintersectiongraphselfgraphoidalgraphs
AT singhkr onagraphisomorphictoitsintersectiongraphselfgraphoidalgraphs
first_indexed 2023-10-18T23:08:18Z
last_indexed 2023-10-18T23:08:18Z
_version_ 1796157346040250368