On unicyclic graphs of metric dimension 2 with vertices of degree 4
We show that if G is a unicyclic graph with metric dimension 2 and {a, b} is a metric basis of G then the degree of any vertex v of G is at most 4 and degrees of both a and b are at most 2. The constructions of unispider and semiunispider graphs and their knittings are introduced. Using these constr...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2018
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/188412 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On unicyclic graphs of metric dimension 2 with vertices of degree 4 / M. Dudenko, B. Oliynyk // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 2. — С. 256–269. — Бібліогр.: 13 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-188412 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1884122023-02-28T01:27:05Z On unicyclic graphs of metric dimension 2 with vertices of degree 4 Dudenko, M. Oliynyk, B. We show that if G is a unicyclic graph with metric dimension 2 and {a, b} is a metric basis of G then the degree of any vertex v of G is at most 4 and degrees of both a and b are at most 2. The constructions of unispider and semiunispider graphs and their knittings are introduced. Using these constructions all unicyclic graphs of metric dimension 2 with vertices of degree 4 are characterized. 2018 Article On unicyclic graphs of metric dimension 2 with vertices of degree 4 / M. Dudenko, B. Oliynyk // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 2. — С. 256–269. — Бібліогр.: 13 назв. — англ. 1726-3255 2010 MSC: 05C12. http://dspace.nbuv.gov.ua/handle/123456789/188412 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We show that if G is a unicyclic graph with metric dimension 2 and {a, b} is a metric basis of G then the degree of any vertex v of G is at most 4 and degrees of both a and b are at most 2. The constructions of unispider and semiunispider graphs and their knittings are introduced. Using these constructions all unicyclic graphs of metric dimension 2 with vertices of degree 4 are characterized. |
format |
Article |
author |
Dudenko, M. Oliynyk, B. |
spellingShingle |
Dudenko, M. Oliynyk, B. On unicyclic graphs of metric dimension 2 with vertices of degree 4 Algebra and Discrete Mathematics |
author_facet |
Dudenko, M. Oliynyk, B. |
author_sort |
Dudenko, M. |
title |
On unicyclic graphs of metric dimension 2 with vertices of degree 4 |
title_short |
On unicyclic graphs of metric dimension 2 with vertices of degree 4 |
title_full |
On unicyclic graphs of metric dimension 2 with vertices of degree 4 |
title_fullStr |
On unicyclic graphs of metric dimension 2 with vertices of degree 4 |
title_full_unstemmed |
On unicyclic graphs of metric dimension 2 with vertices of degree 4 |
title_sort |
on unicyclic graphs of metric dimension 2 with vertices of degree 4 |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2018 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/188412 |
citation_txt |
On unicyclic graphs of metric dimension 2 with vertices of degree 4 / M. Dudenko, B. Oliynyk // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 2. — С. 256–269. — Бібліогр.: 13 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT dudenkom onunicyclicgraphsofmetricdimension2withverticesofdegree4 AT oliynykb onunicyclicgraphsofmetricdimension2withverticesofdegree4 |
first_indexed |
2023-10-18T23:08:18Z |
last_indexed |
2023-10-18T23:08:18Z |
_version_ |
1796157346146156544 |