A formula for the number of weak endomorphisms on paths
A weak endomorphisms of a graph is a mapping on the vertex set of the graph which preserves or contracts edges. In this paper we provide a formula to determine the cardinalities of weak endomorphism monoids of finite undirected paths.
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2018
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/188413 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A formula for the number of weak endomorphisms on paths / U. Knauer, N. Pipattanajinda // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 2. — С. 270–279. — Бібліогр.: 5 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-188413 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1884132023-02-28T01:27:06Z A formula for the number of weak endomorphisms on paths Knauer, U. Pipattanajinda, N. A weak endomorphisms of a graph is a mapping on the vertex set of the graph which preserves or contracts edges. In this paper we provide a formula to determine the cardinalities of weak endomorphism monoids of finite undirected paths. 2018 Article A formula for the number of weak endomorphisms on paths / U. Knauer, N. Pipattanajinda // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 2. — С. 270–279. — Бібліогр.: 5 назв. — англ. 1726-3255 2010 MSC: 05C30; 05C38. http://dspace.nbuv.gov.ua/handle/123456789/188413 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A weak endomorphisms of a graph is a mapping on the vertex set of the graph which preserves or contracts edges. In this paper we provide a formula to determine the cardinalities of weak endomorphism monoids of finite undirected paths. |
format |
Article |
author |
Knauer, U. Pipattanajinda, N. |
spellingShingle |
Knauer, U. Pipattanajinda, N. A formula for the number of weak endomorphisms on paths Algebra and Discrete Mathematics |
author_facet |
Knauer, U. Pipattanajinda, N. |
author_sort |
Knauer, U. |
title |
A formula for the number of weak endomorphisms on paths |
title_short |
A formula for the number of weak endomorphisms on paths |
title_full |
A formula for the number of weak endomorphisms on paths |
title_fullStr |
A formula for the number of weak endomorphisms on paths |
title_full_unstemmed |
A formula for the number of weak endomorphisms on paths |
title_sort |
formula for the number of weak endomorphisms on paths |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2018 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/188413 |
citation_txt |
A formula for the number of weak endomorphisms on paths / U. Knauer, N. Pipattanajinda // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 2. — С. 270–279. — Бібліогр.: 5 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT knaueru aformulaforthenumberofweakendomorphismsonpaths AT pipattanajindan aformulaforthenumberofweakendomorphismsonpaths AT knaueru formulaforthenumberofweakendomorphismsonpaths AT pipattanajindan formulaforthenumberofweakendomorphismsonpaths |
first_indexed |
2023-10-18T23:08:18Z |
last_indexed |
2023-10-18T23:08:18Z |
_version_ |
1796157346251014144 |