2025-02-23T11:26:29-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-188414%22&qt=morelikethis&rows=5
2025-02-23T11:26:29-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-188414%22&qt=morelikethis&rows=5
2025-02-23T11:26:29-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T11:26:29-05:00 DEBUG: Deserialized SOLR response

Spectral properties of partial automorphisms of a binary rooted tree

We study asymptotics of the spectral measure of a randomly chosen partial automorphism of a rooted tree. To every partial automorphism x we assign its action matrix Ax. It is shown that the uniform distribution on eigenvalues of Ax converges weakly in probability to δ₀ as n → ∞, where δ₀ is the delt...

Full description

Saved in:
Bibliographic Details
Main Author: Kochubinska, E.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2018
Series:Algebra and Discrete Mathematics
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/188414
Tags: Add Tag
No Tags, Be the first to tag this record!
id irk-123456789-188414
record_format dspace
spelling irk-123456789-1884142023-02-28T01:27:07Z Spectral properties of partial automorphisms of a binary rooted tree Kochubinska, E. We study asymptotics of the spectral measure of a randomly chosen partial automorphism of a rooted tree. To every partial automorphism x we assign its action matrix Ax. It is shown that the uniform distribution on eigenvalues of Ax converges weakly in probability to δ₀ as n → ∞, where δ₀ is the delta measure concentrated at 0. 2018 Article Spectral properties of partial automorphisms of a binary rooted tree / E. Kochubinska // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 2. — С. 280–289. — Бібліогр.: 6 назв. — англ. 1726-3255 2010 MSC: 20M18, 20M20,05C05. http://dspace.nbuv.gov.ua/handle/123456789/188414 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We study asymptotics of the spectral measure of a randomly chosen partial automorphism of a rooted tree. To every partial automorphism x we assign its action matrix Ax. It is shown that the uniform distribution on eigenvalues of Ax converges weakly in probability to δ₀ as n → ∞, where δ₀ is the delta measure concentrated at 0.
format Article
author Kochubinska, E.
spellingShingle Kochubinska, E.
Spectral properties of partial automorphisms of a binary rooted tree
Algebra and Discrete Mathematics
author_facet Kochubinska, E.
author_sort Kochubinska, E.
title Spectral properties of partial automorphisms of a binary rooted tree
title_short Spectral properties of partial automorphisms of a binary rooted tree
title_full Spectral properties of partial automorphisms of a binary rooted tree
title_fullStr Spectral properties of partial automorphisms of a binary rooted tree
title_full_unstemmed Spectral properties of partial automorphisms of a binary rooted tree
title_sort spectral properties of partial automorphisms of a binary rooted tree
publisher Інститут прикладної математики і механіки НАН України
publishDate 2018
url http://dspace.nbuv.gov.ua/handle/123456789/188414
citation_txt Spectral properties of partial automorphisms of a binary rooted tree / E. Kochubinska // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 2. — С. 280–289. — Бібліогр.: 6 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT kochubinskae spectralpropertiesofpartialautomorphismsofabinaryrootedtree
first_indexed 2023-10-18T23:08:18Z
last_indexed 2023-10-18T23:08:18Z
_version_ 1796157346355871744