Spectral properties of partial automorphisms of a binary rooted tree
We study asymptotics of the spectral measure of a randomly chosen partial automorphism of a rooted tree. To every partial automorphism x we assign its action matrix Ax. It is shown that the uniform distribution on eigenvalues of Ax converges weakly in probability to δ₀ as n → ∞, where δ₀ is the delt...
Збережено в:
Дата: | 2018 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2018
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/188414 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Spectral properties of partial automorphisms of a binary rooted tree / E. Kochubinska // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 2. — С. 280–289. — Бібліогр.: 6 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-188414 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1884142023-02-28T01:27:07Z Spectral properties of partial automorphisms of a binary rooted tree Kochubinska, E. We study asymptotics of the spectral measure of a randomly chosen partial automorphism of a rooted tree. To every partial automorphism x we assign its action matrix Ax. It is shown that the uniform distribution on eigenvalues of Ax converges weakly in probability to δ₀ as n → ∞, where δ₀ is the delta measure concentrated at 0. 2018 Article Spectral properties of partial automorphisms of a binary rooted tree / E. Kochubinska // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 2. — С. 280–289. — Бібліогр.: 6 назв. — англ. 1726-3255 2010 MSC: 20M18, 20M20,05C05. http://dspace.nbuv.gov.ua/handle/123456789/188414 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We study asymptotics of the spectral measure of a randomly chosen partial automorphism of a rooted tree. To every partial automorphism x we assign its action matrix Ax. It is shown that the uniform distribution on eigenvalues of Ax converges weakly in probability to δ₀ as n → ∞, where δ₀ is the delta measure concentrated at 0. |
format |
Article |
author |
Kochubinska, E. |
spellingShingle |
Kochubinska, E. Spectral properties of partial automorphisms of a binary rooted tree Algebra and Discrete Mathematics |
author_facet |
Kochubinska, E. |
author_sort |
Kochubinska, E. |
title |
Spectral properties of partial automorphisms of a binary rooted tree |
title_short |
Spectral properties of partial automorphisms of a binary rooted tree |
title_full |
Spectral properties of partial automorphisms of a binary rooted tree |
title_fullStr |
Spectral properties of partial automorphisms of a binary rooted tree |
title_full_unstemmed |
Spectral properties of partial automorphisms of a binary rooted tree |
title_sort |
spectral properties of partial automorphisms of a binary rooted tree |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2018 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/188414 |
citation_txt |
Spectral properties of partial automorphisms of a binary rooted tree / E. Kochubinska // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 2. — С. 280–289. — Бібліогр.: 6 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT kochubinskae spectralpropertiesofpartialautomorphismsofabinaryrootedtree |
first_indexed |
2023-10-18T23:08:18Z |
last_indexed |
2023-10-18T23:08:18Z |
_version_ |
1796157346355871744 |