Generalized classes of suborbital graphs for the congruence subgroups of the modular group
Let Г be the modular group. We extend a nontrivial Г-invariant equivalence relation on Q to a general relation by replacing the group Г₀(n) by Гк(n), and determine the suborbital graph Fᴷu,n, an extended concept of the graph Fu,n. We investigate several properties of the graph, such as, connectivity...
Збережено в:
Дата: | 2019 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2019
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/188419 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Generalized classes of suborbital graphs for the congruence subgroups of the modular group / P. Jaipong, W. Tapanyo // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 1. — С. 20–36. — Бібліогр.: 14 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Let Г be the modular group. We extend a nontrivial Г-invariant equivalence relation on Q to a general relation by replacing the group Г₀(n) by Гк(n), and determine the suborbital graph Fᴷu,n, an extended concept of the graph Fu,n. We investigate several properties of the graph, such as, connectivity, forest conditions, and the relation between circuits of the graph and elliptic elements of the group Гк(n). We also provide the discussion on suborbital graphs for conjugate subgroups of Г. |
---|