Generalized classes of suborbital graphs for the congruence subgroups of the modular group

Let Г be the modular group. We extend a nontrivial Г-invariant equivalence relation on Q to a general relation by replacing the group Г₀(n) by Гк(n), and determine the suborbital graph Fᴷu,n, an extended concept of the graph Fu,n. We investigate several properties of the graph, such as, connectivity...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автори: Jaipong, P., Tapanyo, W.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2019
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/188419
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Generalized classes of suborbital graphs for the congruence subgroups of the modular group / P. Jaipong, W. Tapanyo // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 1. — С. 20–36. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-188419
record_format dspace
spelling irk-123456789-1884192023-03-01T01:26:58Z Generalized classes of suborbital graphs for the congruence subgroups of the modular group Jaipong, P. Tapanyo, W. Let Г be the modular group. We extend a nontrivial Г-invariant equivalence relation on Q to a general relation by replacing the group Г₀(n) by Гк(n), and determine the suborbital graph Fᴷu,n, an extended concept of the graph Fu,n. We investigate several properties of the graph, such as, connectivity, forest conditions, and the relation between circuits of the graph and elliptic elements of the group Гк(n). We also provide the discussion on suborbital graphs for conjugate subgroups of Г. 2019 Article Generalized classes of suborbital graphs for the congruence subgroups of the modular group / P. Jaipong, W. Tapanyo // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 1. — С. 20–36. — Бібліогр.: 14 назв. — англ. 1726-3255 2010 MSC: Primary 05C20, 05C40, 05C63; Secondary 05C05, 05C60, 20H05. http://dspace.nbuv.gov.ua/handle/123456789/188419 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let Г be the modular group. We extend a nontrivial Г-invariant equivalence relation on Q to a general relation by replacing the group Г₀(n) by Гк(n), and determine the suborbital graph Fᴷu,n, an extended concept of the graph Fu,n. We investigate several properties of the graph, such as, connectivity, forest conditions, and the relation between circuits of the graph and elliptic elements of the group Гк(n). We also provide the discussion on suborbital graphs for conjugate subgroups of Г.
format Article
author Jaipong, P.
Tapanyo, W.
spellingShingle Jaipong, P.
Tapanyo, W.
Generalized classes of suborbital graphs for the congruence subgroups of the modular group
Algebra and Discrete Mathematics
author_facet Jaipong, P.
Tapanyo, W.
author_sort Jaipong, P.
title Generalized classes of suborbital graphs for the congruence subgroups of the modular group
title_short Generalized classes of suborbital graphs for the congruence subgroups of the modular group
title_full Generalized classes of suborbital graphs for the congruence subgroups of the modular group
title_fullStr Generalized classes of suborbital graphs for the congruence subgroups of the modular group
title_full_unstemmed Generalized classes of suborbital graphs for the congruence subgroups of the modular group
title_sort generalized classes of suborbital graphs for the congruence subgroups of the modular group
publisher Інститут прикладної математики і механіки НАН України
publishDate 2019
url http://dspace.nbuv.gov.ua/handle/123456789/188419
citation_txt Generalized classes of suborbital graphs for the congruence subgroups of the modular group / P. Jaipong, W. Tapanyo // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 1. — С. 20–36. — Бібліогр.: 14 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT jaipongp generalizedclassesofsuborbitalgraphsforthecongruencesubgroupsofthemodulargroup
AT tapanyow generalizedclassesofsuborbitalgraphsforthecongruencesubgroupsofthemodulargroup
first_indexed 2023-10-18T23:08:19Z
last_indexed 2023-10-18T23:08:19Z
_version_ 1796157346882256896