Classification of homogeneous Fourier matrices
Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group SL₂(Z). In this paper, we show that there is a one-to-one correspondence between Fourier matrices associated to modular data and self-dual C-algebras that s...
Збережено в:
Дата: | 2019 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2019
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/188424 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Classification of homogeneous Fourier matrices / G. Singh // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 1. — С. 75–84. — Бібліогр.: 7 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-188424 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1884242023-03-02T01:27:35Z Classification of homogeneous Fourier matrices Singh, G. Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group SL₂(Z). In this paper, we show that there is a one-to-one correspondence between Fourier matrices associated to modular data and self-dual C-algebras that satisfy a certain condition. We prove that a homogenous C-algebra arising from a Fourier matrix has all the degrees equal to 1. 2019 Article Classification of homogeneous Fourier matrices / G. Singh // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 1. — С. 75–84. — Бібліогр.: 7 назв. — англ. 1726-3255 2010 MSC: Primary 05E30; Secondary 05E99, 81R05. http://dspace.nbuv.gov.ua/handle/123456789/188424 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group SL₂(Z). In this paper, we show that there is a one-to-one correspondence between Fourier matrices associated to modular data and self-dual C-algebras that satisfy a certain condition. We prove that a homogenous C-algebra arising from a Fourier matrix has all the degrees equal to 1. |
format |
Article |
author |
Singh, G. |
spellingShingle |
Singh, G. Classification of homogeneous Fourier matrices Algebra and Discrete Mathematics |
author_facet |
Singh, G. |
author_sort |
Singh, G. |
title |
Classification of homogeneous Fourier matrices |
title_short |
Classification of homogeneous Fourier matrices |
title_full |
Classification of homogeneous Fourier matrices |
title_fullStr |
Classification of homogeneous Fourier matrices |
title_full_unstemmed |
Classification of homogeneous Fourier matrices |
title_sort |
classification of homogeneous fourier matrices |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2019 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/188424 |
citation_txt |
Classification of homogeneous Fourier matrices / G. Singh // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 1. — С. 75–84. — Бібліогр.: 7 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT singhg classificationofhomogeneousfouriermatrices |
first_indexed |
2023-10-18T23:08:20Z |
last_indexed |
2023-10-18T23:08:20Z |
_version_ |
1796157347408642048 |