Classification of homogeneous Fourier matrices

Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group SL₂(Z). In this paper, we show that there is a one-to-one correspondence between Fourier matrices associated to modular data and self-dual C-algebras that s...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автор: Singh, G.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2019
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/188424
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Classification of homogeneous Fourier matrices / G. Singh // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 1. — С. 75–84. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-188424
record_format dspace
spelling irk-123456789-1884242023-03-02T01:27:35Z Classification of homogeneous Fourier matrices Singh, G. Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group SL₂(Z). In this paper, we show that there is a one-to-one correspondence between Fourier matrices associated to modular data and self-dual C-algebras that satisfy a certain condition. We prove that a homogenous C-algebra arising from a Fourier matrix has all the degrees equal to 1. 2019 Article Classification of homogeneous Fourier matrices / G. Singh // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 1. — С. 75–84. — Бібліогр.: 7 назв. — англ. 1726-3255 2010 MSC: Primary 05E30; Secondary 05E99, 81R05. http://dspace.nbuv.gov.ua/handle/123456789/188424 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group SL₂(Z). In this paper, we show that there is a one-to-one correspondence between Fourier matrices associated to modular data and self-dual C-algebras that satisfy a certain condition. We prove that a homogenous C-algebra arising from a Fourier matrix has all the degrees equal to 1.
format Article
author Singh, G.
spellingShingle Singh, G.
Classification of homogeneous Fourier matrices
Algebra and Discrete Mathematics
author_facet Singh, G.
author_sort Singh, G.
title Classification of homogeneous Fourier matrices
title_short Classification of homogeneous Fourier matrices
title_full Classification of homogeneous Fourier matrices
title_fullStr Classification of homogeneous Fourier matrices
title_full_unstemmed Classification of homogeneous Fourier matrices
title_sort classification of homogeneous fourier matrices
publisher Інститут прикладної математики і механіки НАН України
publishDate 2019
url http://dspace.nbuv.gov.ua/handle/123456789/188424
citation_txt Classification of homogeneous Fourier matrices / G. Singh // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 1. — С. 75–84. — Бібліогр.: 7 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT singhg classificationofhomogeneousfouriermatrices
first_indexed 2023-10-18T23:08:20Z
last_indexed 2023-10-18T23:08:20Z
_version_ 1796157347408642048