Representations of ordered doppelsemigroups by binary relations

We extend the study of doppelsemigroups and introduce the notion of an ordered doppelsemigroup. We construct the ordered doppelsemigroup of binary relations on an arbitrary set and prove that every ordered doppelsemigroup is isomorphic to some ordered doppelsemigroup of binary relations. In particul...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автори: Zhuchok, Y.V., Koppitz, J.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2019
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/188428
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Representations of ordered doppelsemigroups by binary relations / Y.V. Zhuchok, J. Koppitz // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 1. — С. 144–154. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-188428
record_format dspace
spelling irk-123456789-1884282023-03-01T01:27:05Z Representations of ordered doppelsemigroups by binary relations Zhuchok, Y.V. Koppitz, J. We extend the study of doppelsemigroups and introduce the notion of an ordered doppelsemigroup. We construct the ordered doppelsemigroup of binary relations on an arbitrary set and prove that every ordered doppelsemigroup is isomorphic to some ordered doppelsemigroup of binary relations. In particular, we obtain an analogue of Cayley’s theorem for semigroups in the class of doppelsemigroups. We also describe the representations of ordered doppelsemigroups by binary transitive relations. 2019 Article Representations of ordered doppelsemigroups by binary relations / Y.V. Zhuchok, J. Koppitz // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 1. — С. 144–154. — Бібліогр.: 20 назв. — англ. 1726-3255 2010 MSC: 17A30, 06F05, 43A65. http://dspace.nbuv.gov.ua/handle/123456789/188428 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We extend the study of doppelsemigroups and introduce the notion of an ordered doppelsemigroup. We construct the ordered doppelsemigroup of binary relations on an arbitrary set and prove that every ordered doppelsemigroup is isomorphic to some ordered doppelsemigroup of binary relations. In particular, we obtain an analogue of Cayley’s theorem for semigroups in the class of doppelsemigroups. We also describe the representations of ordered doppelsemigroups by binary transitive relations.
format Article
author Zhuchok, Y.V.
Koppitz, J.
spellingShingle Zhuchok, Y.V.
Koppitz, J.
Representations of ordered doppelsemigroups by binary relations
Algebra and Discrete Mathematics
author_facet Zhuchok, Y.V.
Koppitz, J.
author_sort Zhuchok, Y.V.
title Representations of ordered doppelsemigroups by binary relations
title_short Representations of ordered doppelsemigroups by binary relations
title_full Representations of ordered doppelsemigroups by binary relations
title_fullStr Representations of ordered doppelsemigroups by binary relations
title_full_unstemmed Representations of ordered doppelsemigroups by binary relations
title_sort representations of ordered doppelsemigroups by binary relations
publisher Інститут прикладної математики і механіки НАН України
publishDate 2019
url http://dspace.nbuv.gov.ua/handle/123456789/188428
citation_txt Representations of ordered doppelsemigroups by binary relations / Y.V. Zhuchok, J. Koppitz // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 1. — С. 144–154. — Бібліогр.: 20 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT zhuchokyv representationsofordereddoppelsemigroupsbybinaryrelations
AT koppitzj representationsofordereddoppelsemigroupsbybinaryrelations
first_indexed 2023-10-18T23:08:20Z
last_indexed 2023-10-18T23:08:20Z
_version_ 1796157347832266752