2025-02-22T23:35:15-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-188431%22&qt=morelikethis&rows=5
2025-02-22T23:35:15-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-188431%22&qt=morelikethis&rows=5
2025-02-22T23:35:15-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T23:35:15-05:00 DEBUG: Deserialized SOLR response
Automorphism groups of superextensions of finite monogenic semigroups
A family L of subsets of a set X is called linked if A ∩ B ≠ ∅ for any A,B ∈ L. A linked family M of subsets of X is maximal linked if M coincides with each linked family L on X that contains M. The superextension λ(X) of X consists of all maximal linked families on X. Any associative binary operat...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2019
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/188431 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A family L of subsets of a set X is called linked if A ∩ B ≠ ∅ for any A,B ∈ L. A linked family M of subsets of X is maximal linked if M coincides with each linked family L on X that contains M. The superextension λ(X) of X consists of all maximal linked families on X. Any associative binary operation ∗ : X ×X → X can be extended to an associative binary operation ∗ : λ(X) × λ(X) → λ(X). In the paper we study automorphisms of the superextensions of finite monogenic semigroups and characteristic ideals in such semigroups. In particular, we describe the automorphism groups of the superextensions of finite monogenic semigroups of cardinality 6 5. |
---|