2025-02-22T23:35:15-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-188431%22&qt=morelikethis&rows=5
2025-02-22T23:35:15-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-188431%22&qt=morelikethis&rows=5
2025-02-22T23:35:15-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T23:35:15-05:00 DEBUG: Deserialized SOLR response

Automorphism groups of superextensions of finite monogenic semigroups

A family L of subsets of a set X is called linked if A ∩ B ≠ ∅ for any A,B ∈ L. A linked family M of subsets of X is maximal linked if M coincides with each linked family L on X that contains M. The superextension λ(X) of X consists of all maximal linked families on X. Any associative binary operat...

Full description

Saved in:
Bibliographic Details
Main Authors: Banakh, T.O., Gavrylkiv, V.M.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2019
Series:Algebra and Discrete Mathematics
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/188431
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A family L of subsets of a set X is called linked if A ∩ B ≠ ∅ for any A,B ∈ L. A linked family M of subsets of X is maximal linked if M coincides with each linked family L on X that contains M. The superextension λ(X) of X consists of all maximal linked families on X. Any associative binary operation ∗ : X ×X → X can be extended to an associative binary operation ∗ : λ(X) × λ(X) → λ(X). In the paper we study automorphisms of the superextensions of finite monogenic semigroups and characteristic ideals in such semigroups. In particular, we describe the automorphism groups of the superextensions of finite monogenic semigroups of cardinality 6 5.