2025-02-22T23:56:01-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-188431%22&qt=morelikethis&rows=5
2025-02-22T23:56:01-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-188431%22&qt=morelikethis&rows=5
2025-02-22T23:56:01-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T23:56:01-05:00 DEBUG: Deserialized SOLR response

Automorphism groups of superextensions of finite monogenic semigroups

A family L of subsets of a set X is called linked if A ∩ B ≠ ∅ for any A,B ∈ L. A linked family M of subsets of X is maximal linked if M coincides with each linked family L on X that contains M. The superextension λ(X) of X consists of all maximal linked families on X. Any associative binary operat...

Full description

Saved in:
Bibliographic Details
Main Authors: Banakh, T.O., Gavrylkiv, V.M.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2019
Series:Algebra and Discrete Mathematics
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/188431
Tags: Add Tag
No Tags, Be the first to tag this record!
id irk-123456789-188431
record_format dspace
spelling irk-123456789-1884312023-03-02T01:27:09Z Automorphism groups of superextensions of finite monogenic semigroups Banakh, T.O. Gavrylkiv, V.M. A family L of subsets of a set X is called linked if A ∩ B ≠ ∅ for any A,B ∈ L. A linked family M of subsets of X is maximal linked if M coincides with each linked family L on X that contains M. The superextension λ(X) of X consists of all maximal linked families on X. Any associative binary operation ∗ : X ×X → X can be extended to an associative binary operation ∗ : λ(X) × λ(X) → λ(X). In the paper we study automorphisms of the superextensions of finite monogenic semigroups and characteristic ideals in such semigroups. In particular, we describe the automorphism groups of the superextensions of finite monogenic semigroups of cardinality 6 5. 2019 Article Automorphism groups of superextensions of finite monogenic semigroups / T.O. Banakh, V.M. Gavrylkiv // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 2. — С. 165–190. — Бібліогр.: 24 назв. — англ. 1726-3255 2010 MSC: 20D45, 20M15, 20B25. http://dspace.nbuv.gov.ua/handle/123456789/188431 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A family L of subsets of a set X is called linked if A ∩ B ≠ ∅ for any A,B ∈ L. A linked family M of subsets of X is maximal linked if M coincides with each linked family L on X that contains M. The superextension λ(X) of X consists of all maximal linked families on X. Any associative binary operation ∗ : X ×X → X can be extended to an associative binary operation ∗ : λ(X) × λ(X) → λ(X). In the paper we study automorphisms of the superextensions of finite monogenic semigroups and characteristic ideals in such semigroups. In particular, we describe the automorphism groups of the superextensions of finite monogenic semigroups of cardinality 6 5.
format Article
author Banakh, T.O.
Gavrylkiv, V.M.
spellingShingle Banakh, T.O.
Gavrylkiv, V.M.
Automorphism groups of superextensions of finite monogenic semigroups
Algebra and Discrete Mathematics
author_facet Banakh, T.O.
Gavrylkiv, V.M.
author_sort Banakh, T.O.
title Automorphism groups of superextensions of finite monogenic semigroups
title_short Automorphism groups of superextensions of finite monogenic semigroups
title_full Automorphism groups of superextensions of finite monogenic semigroups
title_fullStr Automorphism groups of superextensions of finite monogenic semigroups
title_full_unstemmed Automorphism groups of superextensions of finite monogenic semigroups
title_sort automorphism groups of superextensions of finite monogenic semigroups
publisher Інститут прикладної математики і механіки НАН України
publishDate 2019
url http://dspace.nbuv.gov.ua/handle/123456789/188431
citation_txt Automorphism groups of superextensions of finite monogenic semigroups / T.O. Banakh, V.M. Gavrylkiv // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 2. — С. 165–190. — Бібліогр.: 24 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT banakhto automorphismgroupsofsuperextensionsoffinitemonogenicsemigroups
AT gavrylkivvm automorphismgroupsofsuperextensionsoffinitemonogenicsemigroups
first_indexed 2023-10-18T23:08:21Z
last_indexed 2023-10-18T23:08:21Z
_version_ 1796157348147888128