On cospectral signed digraphs
The set of distinct eigenvalues of a signed digraph S together with their respective multiplicities is called its spectrum. Two signed digraphs of same order are said to be cospectral if they have the same spectrum. In this paper, we show the existence of integral, real and Gaussian cospectral signe...
Збережено в:
Дата: | 2019 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2019
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/188432 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On cospectral signed digraphs / M.A. Bhat, T.A. Naikoo, S. Pirzada // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 2. — С. 191–201. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-188432 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1884322023-03-02T01:27:15Z On cospectral signed digraphs Bhat, M.A. Naikoo, T.A. Pirzada, S. The set of distinct eigenvalues of a signed digraph S together with their respective multiplicities is called its spectrum. Two signed digraphs of same order are said to be cospectral if they have the same spectrum. In this paper, we show the existence of integral, real and Gaussian cospectral signed digraphs. We give a spectral characterization of normal signed digraphs and use it to construct cospectral normal signed digraphs. 2019 Article On cospectral signed digraphs / M.A. Bhat, T.A. Naikoo, S. Pirzada // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 2. — С. 191–201. — Бібліогр.: 10 назв. — англ. 1726-3255 2010 MSC: 05C30, 05C50. http://dspace.nbuv.gov.ua/handle/123456789/188432 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The set of distinct eigenvalues of a signed digraph S together with their respective multiplicities is called its spectrum. Two signed digraphs of same order are said to be cospectral if they have the same spectrum. In this paper, we show the existence of integral, real and Gaussian cospectral signed digraphs. We give a spectral characterization of normal signed digraphs and use it to construct cospectral normal signed digraphs. |
format |
Article |
author |
Bhat, M.A. Naikoo, T.A. Pirzada, S. |
spellingShingle |
Bhat, M.A. Naikoo, T.A. Pirzada, S. On cospectral signed digraphs Algebra and Discrete Mathematics |
author_facet |
Bhat, M.A. Naikoo, T.A. Pirzada, S. |
author_sort |
Bhat, M.A. |
title |
On cospectral signed digraphs |
title_short |
On cospectral signed digraphs |
title_full |
On cospectral signed digraphs |
title_fullStr |
On cospectral signed digraphs |
title_full_unstemmed |
On cospectral signed digraphs |
title_sort |
on cospectral signed digraphs |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2019 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/188432 |
citation_txt |
On cospectral signed digraphs / M.A. Bhat, T.A. Naikoo, S. Pirzada // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 2. — С. 191–201. — Бібліогр.: 10 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT bhatma oncospectralsigneddigraphs AT naikoota oncospectralsigneddigraphs AT pirzadas oncospectralsigneddigraphs |
first_indexed |
2023-10-18T23:08:21Z |
last_indexed |
2023-10-18T23:08:21Z |
_version_ |
1796157348252745728 |