Solutions of the matrix linear bilateral polynomial equation and their structure

We investigate the row and column structure of solutions of the matrix polynomial equation A(λ)X(λ) + Y (λ)B(λ) = C(λ), where A(λ),B(λ) and C(λ) are the matrices over the ring of polynomials F[λ] with coefficients in field F. We establish the bounds for degrees of the rows and columns which depend o...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автори: Dzhaliuk, N.S., Petrychkovych, V.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2019
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/188435
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Solutions of the matrix linear bilateral polynomial equation and their structure / N.S. Dzhaliuk, V.M. Petrychkovych // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 2. — С. 243–251. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-188435
record_format dspace
spelling irk-123456789-1884352023-03-02T01:27:37Z Solutions of the matrix linear bilateral polynomial equation and their structure Dzhaliuk, N.S. Petrychkovych, V.M. We investigate the row and column structure of solutions of the matrix polynomial equation A(λ)X(λ) + Y (λ)B(λ) = C(λ), where A(λ),B(λ) and C(λ) are the matrices over the ring of polynomials F[λ] with coefficients in field F. We establish the bounds for degrees of the rows and columns which depend on degrees of the corresponding invariant factors of matrices A(λ) and B(λ). A criterion for uniqueness of such solutions is pointed out. A method for construction of such solutions is suggested. We also established the existence of solutions of this matrix polynomial equation whose degrees are less than degrees of the Smith normal forms of matrices A(λ) and B(λ). 2019 Article Solutions of the matrix linear bilateral polynomial equation and their structure / N.S. Dzhaliuk, V.M. Petrychkovych // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 2. — С. 243–251. — Бібліогр.: 14 назв. — англ. 1726-3255 2010 MSC: 15A21, 15A24. http://dspace.nbuv.gov.ua/handle/123456789/188435 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We investigate the row and column structure of solutions of the matrix polynomial equation A(λ)X(λ) + Y (λ)B(λ) = C(λ), where A(λ),B(λ) and C(λ) are the matrices over the ring of polynomials F[λ] with coefficients in field F. We establish the bounds for degrees of the rows and columns which depend on degrees of the corresponding invariant factors of matrices A(λ) and B(λ). A criterion for uniqueness of such solutions is pointed out. A method for construction of such solutions is suggested. We also established the existence of solutions of this matrix polynomial equation whose degrees are less than degrees of the Smith normal forms of matrices A(λ) and B(λ).
format Article
author Dzhaliuk, N.S.
Petrychkovych, V.M.
spellingShingle Dzhaliuk, N.S.
Petrychkovych, V.M.
Solutions of the matrix linear bilateral polynomial equation and their structure
Algebra and Discrete Mathematics
author_facet Dzhaliuk, N.S.
Petrychkovych, V.M.
author_sort Dzhaliuk, N.S.
title Solutions of the matrix linear bilateral polynomial equation and their structure
title_short Solutions of the matrix linear bilateral polynomial equation and their structure
title_full Solutions of the matrix linear bilateral polynomial equation and their structure
title_fullStr Solutions of the matrix linear bilateral polynomial equation and their structure
title_full_unstemmed Solutions of the matrix linear bilateral polynomial equation and their structure
title_sort solutions of the matrix linear bilateral polynomial equation and their structure
publisher Інститут прикладної математики і механіки НАН України
publishDate 2019
url http://dspace.nbuv.gov.ua/handle/123456789/188435
citation_txt Solutions of the matrix linear bilateral polynomial equation and their structure / N.S. Dzhaliuk, V.M. Petrychkovych // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 2. — С. 243–251. — Бібліогр.: 14 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT dzhaliukns solutionsofthematrixlinearbilateralpolynomialequationandtheirstructure
AT petrychkovychvm solutionsofthematrixlinearbilateralpolynomialequationandtheirstructure
first_indexed 2023-10-18T23:08:21Z
last_indexed 2023-10-18T23:08:21Z
_version_ 1796157348569415680