Commutator subgroups of the power subgroups of generalized Hecke groups

Let p, q ≥ 2 be relatively prime integers and let Hp,q be the generalized Hecke group associated to p and q. The generalized Hecke group Hp,q is generated by X(z) = −(z − λp)⁻¹ and Y (z) = −(z + λq)⁻¹ where λp = 2cos π/p and λq = 2 cos π/q.In this paper, for positive integer m, we study the commutat...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автори: Koruoğlu, Ö., Meral, T., Sahin, R.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2019
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/188438
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Commutator subgroups of the power subgroups of generalized Hecke groups/ Ö. Koruoğlu, T. Meral, R. Sahin // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 2. — С. 280–291. — Бібліогр.: 39 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Let p, q ≥ 2 be relatively prime integers and let Hp,q be the generalized Hecke group associated to p and q. The generalized Hecke group Hp,q is generated by X(z) = −(z − λp)⁻¹ and Y (z) = −(z + λq)⁻¹ where λp = 2cos π/p and λq = 2 cos π/q.In this paper, for positive integer m, we study the commutator subgroups (Hᵐp,q)′ of the power subgroups Hᵐp,q of generalized Hecke groups Hp,q. We give an application related with the derived series for all triangle groups of the form (0; p, q, n), for distinct primes p, q and for positive integer n.