Adjoint functors, preradicals and closure operators in module categories
In this article preradicals and closure operators are studied in an adjoint situation, defined by two covariant functors between the module categories R-Mod and S-Mod. The mappings which determine the relationship between the classes of preradicals and the classes of closure operators of these categ...
Збережено в:
Дата: | 2019 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2019
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/188493 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Adjoint functors, preradicals and closure operators in module categories / A.I. Kashu // Algebra and Discrete Mathematics. — 2019. — Vol. 28, № 2. — С. 260–277. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | In this article preradicals and closure operators are studied in an adjoint situation, defined by two covariant functors between the module categories R-Mod and S-Mod. The mappings which determine the relationship between the classes of preradicals and the classes of closure operators of these categories are investigated. The goal of research is to elucidate the concordance (compatibility) of these mappings. For that some combinations of them, consisting of four mappings, are considered and the commutativity of corresponding diagrams (squares) is studied. The obtained results show the connection between considered mappings in adjoint situation. |
---|