A new characterization of finite σ-soluble PσT-groups

Let σ = {σi | i ∈ I} be a partition of the set of all primes ℙ and G a finite group. G is said to be σ-soluble if every chief factor H/K of G is a σᵢ-group for some i = i(H/K). A set H of subgroups of G is said to be a complete Hall σ-set of G if every member ≠ 1 of H is a Hall σᵢ-subgroup of G for...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2020
Автор: Adarchenko, N.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2020
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/188499
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A new characterization of finite σ-soluble PσT-groups / N.M. Adarchenko // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 33–41. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Let σ = {σi | i ∈ I} be a partition of the set of all primes ℙ and G a finite group. G is said to be σ-soluble if every chief factor H/K of G is a σᵢ-group for some i = i(H/K). A set H of subgroups of G is said to be a complete Hall σ-set of G if every member ≠ 1 of H is a Hall σᵢ-subgroup of G for some σᵢ∈ σ and H contains exactly one Hall σᵢ-subgroup of G for every i such that σᵢ ∩ π(G) ≠ ∅. A subgroup A of G is said to be σ-quasinormal or σ-permutable in G if G has a complete Hall σ-set H such that AHˣ = HˣA for all x ∈ G and all H ∈ H. We obtain a new characterization of finite σ-soluble groups G in which σ-permutability is a transitive relation in G.