Leibniz algebras with absolute maximal Lie subalgebras
A Lie subalgebra of a given Leibniz algebra is said to be an absolute maximal Lie subalgebra if it has codimension one. In this paper, we study some properties of non-Lie Leibniz algebras containing absolute maximal Lie subalgebras. When the dimension and codimension of their Lie-center are greater...
Збережено в:
Дата: | 2020 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2020
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/188501 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Leibniz algebras with absolute maximal Lie subalgebras / G.R. Biyogmam, C. Tcheka // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 52–65. — Бібліогр.: 18 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-188501 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1885012023-03-04T01:27:06Z Leibniz algebras with absolute maximal Lie subalgebras Biyogmam, G.R. Tcheka, C. A Lie subalgebra of a given Leibniz algebra is said to be an absolute maximal Lie subalgebra if it has codimension one. In this paper, we study some properties of non-Lie Leibniz algebras containing absolute maximal Lie subalgebras. When the dimension and codimension of their Lie-center are greater than two, we refer to these Leibniz algebras as s-Leibniz algebras (strong Leibniz algebras). We provide a classification of nilpotent Leibniz s-algebras of dimension up to five. 2020 Article Leibniz algebras with absolute maximal Lie subalgebras / G.R. Biyogmam, C. Tcheka // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 52–65. — Бібліогр.: 18 назв. — англ. 1726-3255 DOI:10.12958/adm1165 2010 MSC: 17A32, 17B55, 18B99. http://dspace.nbuv.gov.ua/handle/123456789/188501 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A Lie subalgebra of a given Leibniz algebra is said to be an absolute maximal Lie subalgebra if it has codimension one. In this paper, we study some properties of non-Lie Leibniz algebras containing absolute maximal Lie subalgebras. When the dimension and codimension of their Lie-center are greater than two, we refer to these Leibniz algebras as s-Leibniz algebras (strong Leibniz algebras). We provide a classification of nilpotent Leibniz s-algebras of dimension up to five. |
format |
Article |
author |
Biyogmam, G.R. Tcheka, C. |
spellingShingle |
Biyogmam, G.R. Tcheka, C. Leibniz algebras with absolute maximal Lie subalgebras Algebra and Discrete Mathematics |
author_facet |
Biyogmam, G.R. Tcheka, C. |
author_sort |
Biyogmam, G.R. |
title |
Leibniz algebras with absolute maximal Lie subalgebras |
title_short |
Leibniz algebras with absolute maximal Lie subalgebras |
title_full |
Leibniz algebras with absolute maximal Lie subalgebras |
title_fullStr |
Leibniz algebras with absolute maximal Lie subalgebras |
title_full_unstemmed |
Leibniz algebras with absolute maximal Lie subalgebras |
title_sort |
leibniz algebras with absolute maximal lie subalgebras |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2020 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/188501 |
citation_txt |
Leibniz algebras with absolute maximal Lie subalgebras / G.R. Biyogmam, C. Tcheka // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 52–65. — Бібліогр.: 18 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT biyogmamgr leibnizalgebraswithabsolutemaximalliesubalgebras AT tchekac leibnizalgebraswithabsolutemaximalliesubalgebras |
first_indexed |
2023-10-18T23:08:30Z |
last_indexed |
2023-10-18T23:08:30Z |
_version_ |
1796157354804248576 |