On the non–periodic groups, whose subgroups of infinite special rank are transitively normal

This paper devoted to the non-periodic locally generalized radical groups, whose subgroups of infinite special rank are transitively normal. We proved that if such a group G includes an ascendant locally nilpotent subgroup of infinite special rank, then G is abelian.

Збережено в:
Бібліографічні деталі
Дата:2020
Автори: Kurdachenko, L.A., Subbotin, I.Ya., Velychko, T.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2020
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/188503
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the non–periodic groups, whose subgroups of infinite special rank are transitively normal / L.A. Kurdachenko, I.Ya. Subbotin, T.V. Velychko // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 74–84. — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-188503
record_format dspace
spelling irk-123456789-1885032023-03-04T01:27:01Z On the non–periodic groups, whose subgroups of infinite special rank are transitively normal Kurdachenko, L.A. Subbotin, I.Ya. Velychko, T.V. This paper devoted to the non-periodic locally generalized radical groups, whose subgroups of infinite special rank are transitively normal. We proved that if such a group G includes an ascendant locally nilpotent subgroup of infinite special rank, then G is abelian. 2020 Article On the non–periodic groups, whose subgroups of infinite special rank are transitively normal / L.A. Kurdachenko, I.Ya. Subbotin, T.V. Velychko // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 74–84. — Бібліогр.: 16 назв. — англ. 1726-3255 DOI:10.12958/adm1357 2010 MSC: Primary 20E15, 20F16; Secondary 20E25, 20E34, 20F22, 20F50. http://dspace.nbuv.gov.ua/handle/123456789/188503 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description This paper devoted to the non-periodic locally generalized radical groups, whose subgroups of infinite special rank are transitively normal. We proved that if such a group G includes an ascendant locally nilpotent subgroup of infinite special rank, then G is abelian.
format Article
author Kurdachenko, L.A.
Subbotin, I.Ya.
Velychko, T.V.
spellingShingle Kurdachenko, L.A.
Subbotin, I.Ya.
Velychko, T.V.
On the non–periodic groups, whose subgroups of infinite special rank are transitively normal
Algebra and Discrete Mathematics
author_facet Kurdachenko, L.A.
Subbotin, I.Ya.
Velychko, T.V.
author_sort Kurdachenko, L.A.
title On the non–periodic groups, whose subgroups of infinite special rank are transitively normal
title_short On the non–periodic groups, whose subgroups of infinite special rank are transitively normal
title_full On the non–periodic groups, whose subgroups of infinite special rank are transitively normal
title_fullStr On the non–periodic groups, whose subgroups of infinite special rank are transitively normal
title_full_unstemmed On the non–periodic groups, whose subgroups of infinite special rank are transitively normal
title_sort on the non–periodic groups, whose subgroups of infinite special rank are transitively normal
publisher Інститут прикладної математики і механіки НАН України
publishDate 2020
url http://dspace.nbuv.gov.ua/handle/123456789/188503
citation_txt On the non–periodic groups, whose subgroups of infinite special rank are transitively normal / L.A. Kurdachenko, I.Ya. Subbotin, T.V. Velychko // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 74–84. — Бібліогр.: 16 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT kurdachenkola onthenonperiodicgroupswhosesubgroupsofinfinitespecialrankaretransitivelynormal
AT subbotiniya onthenonperiodicgroupswhosesubgroupsofinfinitespecialrankaretransitivelynormal
AT velychkotv onthenonperiodicgroupswhosesubgroupsofinfinitespecialrankaretransitivelynormal
first_indexed 2023-10-18T23:08:30Z
last_indexed 2023-10-18T23:08:30Z
_version_ 1796157355016060928