Group of continuous transformations of real interval preserving tails of G₂-representation of numbers

In the paper, we consider a two-symbol system of encoding for real numbers with two bases having different signs g₀ < 1 and g₁ = g₀ − 1. Transformations (bijections of the set to itself) of interval [0, g₀] preserving tails of this representation of numbers are studied. We prove constructively th...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2020
Автори: Pratsiovytyi, M.V., Lysenko, I.M., Maslova, Yu.P.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2020
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/188505
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Group of continuous transformations of real interval preserving tails of G₂-representation of numbers / M.V. Pratsiovytyi, I.M. Lysenko, Yu.P. Maslova // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 99–108. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:In the paper, we consider a two-symbol system of encoding for real numbers with two bases having different signs g₀ < 1 and g₁ = g₀ − 1. Transformations (bijections of the set to itself) of interval [0, g₀] preserving tails of this representation of numbers are studied. We prove constructively that the set of all continuous transformations from this class with respect to composition of functions forms an infinite non-abelian group such that increasing transformations form its proper subgroup. This group is a proper subgroup of the group of transformations preserving frequencies of digits of representations of numbers.