Linear groups saturated by subgroups of finite central dimension
Let F be a field, A be a vector space over F and G be a subgroup of GL(F,A). We say that G has a dense family of subgroups, having finite central dimension, if for every pair of subgroups H, K of G such that H ≤ K and H is not maximal in K there exists a subgroup L of finite central dimension such t...
Збережено в:
Дата: | 2020 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2020
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/188507 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Linear groups saturated by subgroups of finite central dimension / N.N. Semko, L.V. Skaskiv, O.A. Yarovaya // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 117–128. — Бібліогр.: 29 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Let F be a field, A be a vector space over F and G be a subgroup of GL(F,A). We say that G has a dense family of subgroups, having finite central dimension, if for every pair of subgroups H, K of G such that H ≤ K and H is not maximal in K there exists a subgroup L of finite central dimension such that H ≤ L ≤ K. In this paper we study some locally soluble linear groups with a dense family of subgroups, having finite central dimension. |
---|