Linear groups saturated by subgroups of finite central dimension

Let F be a field, A be a vector space over F and G be a subgroup of GL(F,A). We say that G has a dense family of subgroups, having finite central dimension, if for every pair of subgroups H, K of G such that H ≤ K and H is not maximal in K there exists a subgroup L of finite central dimension such t...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2020
Автори: Semko, N.N., Skaskiv, L.V., Yarovaya, O.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2020
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/188507
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Linear groups saturated by subgroups of finite central dimension / N.N. Semko, L.V. Skaskiv, O.A. Yarovaya // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 117–128. — Бібліогр.: 29 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-188507
record_format dspace
spelling irk-123456789-1885072023-03-04T01:27:16Z Linear groups saturated by subgroups of finite central dimension Semko, N.N. Skaskiv, L.V. Yarovaya, O.A. Let F be a field, A be a vector space over F and G be a subgroup of GL(F,A). We say that G has a dense family of subgroups, having finite central dimension, if for every pair of subgroups H, K of G such that H ≤ K and H is not maximal in K there exists a subgroup L of finite central dimension such that H ≤ L ≤ K. In this paper we study some locally soluble linear groups with a dense family of subgroups, having finite central dimension. 2020 Article Linear groups saturated by subgroups of finite central dimension / N.N. Semko, L.V. Skaskiv, O.A. Yarovaya // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 117–128. — Бібліогр.: 29 назв. — англ. 1726-3255 DOI:10.12958/adm1317 2010 MSC: Primary 20E15, 20F16; Secondary 20E25, 20E34, 20F22, 20F50 http://dspace.nbuv.gov.ua/handle/123456789/188507 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let F be a field, A be a vector space over F and G be a subgroup of GL(F,A). We say that G has a dense family of subgroups, having finite central dimension, if for every pair of subgroups H, K of G such that H ≤ K and H is not maximal in K there exists a subgroup L of finite central dimension such that H ≤ L ≤ K. In this paper we study some locally soluble linear groups with a dense family of subgroups, having finite central dimension.
format Article
author Semko, N.N.
Skaskiv, L.V.
Yarovaya, O.A.
spellingShingle Semko, N.N.
Skaskiv, L.V.
Yarovaya, O.A.
Linear groups saturated by subgroups of finite central dimension
Algebra and Discrete Mathematics
author_facet Semko, N.N.
Skaskiv, L.V.
Yarovaya, O.A.
author_sort Semko, N.N.
title Linear groups saturated by subgroups of finite central dimension
title_short Linear groups saturated by subgroups of finite central dimension
title_full Linear groups saturated by subgroups of finite central dimension
title_fullStr Linear groups saturated by subgroups of finite central dimension
title_full_unstemmed Linear groups saturated by subgroups of finite central dimension
title_sort linear groups saturated by subgroups of finite central dimension
publisher Інститут прикладної математики і механіки НАН України
publishDate 2020
url http://dspace.nbuv.gov.ua/handle/123456789/188507
citation_txt Linear groups saturated by subgroups of finite central dimension / N.N. Semko, L.V. Skaskiv, O.A. Yarovaya // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 117–128. — Бібліогр.: 29 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT semkonn lineargroupssaturatedbysubgroupsoffinitecentraldimension
AT skaskivlv lineargroupssaturatedbysubgroupsoffinitecentraldimension
AT yarovayaoa lineargroupssaturatedbysubgroupsoffinitecentraldimension
first_indexed 2023-10-18T23:08:31Z
last_indexed 2023-10-18T23:08:31Z
_version_ 1796157355437588480