Linear groups saturated by subgroups of finite central dimension
Let F be a field, A be a vector space over F and G be a subgroup of GL(F,A). We say that G has a dense family of subgroups, having finite central dimension, if for every pair of subgroups H, K of G such that H ≤ K and H is not maximal in K there exists a subgroup L of finite central dimension such t...
Збережено в:
Дата: | 2020 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2020
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/188507 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Linear groups saturated by subgroups of finite central dimension / N.N. Semko, L.V. Skaskiv, O.A. Yarovaya // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 117–128. — Бібліогр.: 29 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-188507 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1885072023-03-04T01:27:16Z Linear groups saturated by subgroups of finite central dimension Semko, N.N. Skaskiv, L.V. Yarovaya, O.A. Let F be a field, A be a vector space over F and G be a subgroup of GL(F,A). We say that G has a dense family of subgroups, having finite central dimension, if for every pair of subgroups H, K of G such that H ≤ K and H is not maximal in K there exists a subgroup L of finite central dimension such that H ≤ L ≤ K. In this paper we study some locally soluble linear groups with a dense family of subgroups, having finite central dimension. 2020 Article Linear groups saturated by subgroups of finite central dimension / N.N. Semko, L.V. Skaskiv, O.A. Yarovaya // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 117–128. — Бібліогр.: 29 назв. — англ. 1726-3255 DOI:10.12958/adm1317 2010 MSC: Primary 20E15, 20F16; Secondary 20E25, 20E34, 20F22, 20F50 http://dspace.nbuv.gov.ua/handle/123456789/188507 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Let F be a field, A be a vector space over F and G be a subgroup of GL(F,A). We say that G has a dense family of subgroups, having finite central dimension, if for every pair of subgroups H, K of G such that H ≤ K and H is not maximal in K there exists a subgroup L of finite central dimension such that H ≤ L ≤ K. In this paper we study some locally soluble linear groups with a dense family of subgroups, having finite central dimension. |
format |
Article |
author |
Semko, N.N. Skaskiv, L.V. Yarovaya, O.A. |
spellingShingle |
Semko, N.N. Skaskiv, L.V. Yarovaya, O.A. Linear groups saturated by subgroups of finite central dimension Algebra and Discrete Mathematics |
author_facet |
Semko, N.N. Skaskiv, L.V. Yarovaya, O.A. |
author_sort |
Semko, N.N. |
title |
Linear groups saturated by subgroups of finite central dimension |
title_short |
Linear groups saturated by subgroups of finite central dimension |
title_full |
Linear groups saturated by subgroups of finite central dimension |
title_fullStr |
Linear groups saturated by subgroups of finite central dimension |
title_full_unstemmed |
Linear groups saturated by subgroups of finite central dimension |
title_sort |
linear groups saturated by subgroups of finite central dimension |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2020 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/188507 |
citation_txt |
Linear groups saturated by subgroups of finite central dimension / N.N. Semko, L.V. Skaskiv, O.A. Yarovaya // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 117–128. — Бібліогр.: 29 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT semkonn lineargroupssaturatedbysubgroupsoffinitecentraldimension AT skaskivlv lineargroupssaturatedbysubgroupsoffinitecentraldimension AT yarovayaoa lineargroupssaturatedbysubgroupsoffinitecentraldimension |
first_indexed |
2023-10-18T23:08:31Z |
last_indexed |
2023-10-18T23:08:31Z |
_version_ |
1796157355437588480 |