Computing bounds for the general sum-connectivity index of some graph operations

In this paper, we compute the bounds for general sum-connectivity index of several graph operations. These operations include corona product, cartesian product, strong product, composition, join, disjunction and symmetric difference of graphs. We apply the obtained results to find the bounds for the...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2020
Автори: Akhter, S., Farooq, R.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2020
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/188511
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Computing bounds for the general sum-connectivity index of some graph operations / S. Akhter, R. Farooq // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 2. — С. 147–160. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-188511
record_format dspace
spelling irk-123456789-1885112023-03-04T01:27:07Z Computing bounds for the general sum-connectivity index of some graph operations Akhter, S. Farooq, R. In this paper, we compute the bounds for general sum-connectivity index of several graph operations. These operations include corona product, cartesian product, strong product, composition, join, disjunction and symmetric difference of graphs. We apply the obtained results to find the bounds for the general sum-connectivity index of some graphs of general interest. 2020 Article Computing bounds for the general sum-connectivity index of some graph operations / S. Akhter, R. Farooq // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 2. — С. 147–160. — Бібліогр.: 20 назв. — англ. 1726-3255 DOI:10.12958/adm281 2010 MSC: 05C76, 05C07. http://dspace.nbuv.gov.ua/handle/123456789/188511 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper, we compute the bounds for general sum-connectivity index of several graph operations. These operations include corona product, cartesian product, strong product, composition, join, disjunction and symmetric difference of graphs. We apply the obtained results to find the bounds for the general sum-connectivity index of some graphs of general interest.
format Article
author Akhter, S.
Farooq, R.
spellingShingle Akhter, S.
Farooq, R.
Computing bounds for the general sum-connectivity index of some graph operations
Algebra and Discrete Mathematics
author_facet Akhter, S.
Farooq, R.
author_sort Akhter, S.
title Computing bounds for the general sum-connectivity index of some graph operations
title_short Computing bounds for the general sum-connectivity index of some graph operations
title_full Computing bounds for the general sum-connectivity index of some graph operations
title_fullStr Computing bounds for the general sum-connectivity index of some graph operations
title_full_unstemmed Computing bounds for the general sum-connectivity index of some graph operations
title_sort computing bounds for the general sum-connectivity index of some graph operations
publisher Інститут прикладної математики і механіки НАН України
publishDate 2020
url http://dspace.nbuv.gov.ua/handle/123456789/188511
citation_txt Computing bounds for the general sum-connectivity index of some graph operations / S. Akhter, R. Farooq // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 2. — С. 147–160. — Бібліогр.: 20 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT akhters computingboundsforthegeneralsumconnectivityindexofsomegraphoperations
AT farooqr computingboundsforthegeneralsumconnectivityindexofsomegraphoperations
first_indexed 2023-10-18T23:08:31Z
last_indexed 2023-10-18T23:08:31Z
_version_ 1796157355858067456