Normal high order elements in finite field extensions based on the cyclotomic polynomials
We consider elements which are both of high multiplicative order and normal in extensions Fqm of the field Fq. If the extension is defined by a cyclotomic polynomial, we construct such elements explicitly and give explicit lower bounds on their orders.
Збережено в:
Дата: | 2020 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2020
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/188518 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Normal high order elements in finite field extensions based on the cyclotomic polynomials / R. Popovych, R. Skuratovskii // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 2. — С. 241–248. — Бібліогр.: 9 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-188518 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1885182023-03-04T01:27:11Z Normal high order elements in finite field extensions based on the cyclotomic polynomials Popovych, R. Skuratovskii, R. We consider elements which are both of high multiplicative order and normal in extensions Fqm of the field Fq. If the extension is defined by a cyclotomic polynomial, we construct such elements explicitly and give explicit lower bounds on their orders. 2020 Article Normal high order elements in finite field extensions based on the cyclotomic polynomials / R. Popovych, R. Skuratovskii // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 2. — С. 241–248. — Бібліогр.: 9 назв. — англ. 1726-3255 DOI:10.12958/adm1117 2010 MSC: 11T30. http://dspace.nbuv.gov.ua/handle/123456789/188518 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We consider elements which are both of high multiplicative order and normal in extensions Fqm of the field Fq. If the extension is defined by a cyclotomic polynomial, we construct such elements explicitly and give explicit lower bounds on their orders. |
format |
Article |
author |
Popovych, R. Skuratovskii, R. |
spellingShingle |
Popovych, R. Skuratovskii, R. Normal high order elements in finite field extensions based on the cyclotomic polynomials Algebra and Discrete Mathematics |
author_facet |
Popovych, R. Skuratovskii, R. |
author_sort |
Popovych, R. |
title |
Normal high order elements in finite field extensions based on the cyclotomic polynomials |
title_short |
Normal high order elements in finite field extensions based on the cyclotomic polynomials |
title_full |
Normal high order elements in finite field extensions based on the cyclotomic polynomials |
title_fullStr |
Normal high order elements in finite field extensions based on the cyclotomic polynomials |
title_full_unstemmed |
Normal high order elements in finite field extensions based on the cyclotomic polynomials |
title_sort |
normal high order elements in finite field extensions based on the cyclotomic polynomials |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2020 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/188518 |
citation_txt |
Normal high order elements in finite field extensions based on the cyclotomic polynomials / R. Popovych, R. Skuratovskii // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 2. — С. 241–248. — Бібліогр.: 9 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT popovychr normalhighorderelementsinfinitefieldextensionsbasedonthecyclotomicpolynomials AT skuratovskiir normalhighorderelementsinfinitefieldextensionsbasedonthecyclotomicpolynomials |
first_indexed |
2023-10-18T23:08:32Z |
last_indexed |
2023-10-18T23:08:32Z |
_version_ |
1796157356594167808 |