2025-02-23T11:21:23-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-188549%22&qt=morelikethis&rows=5
2025-02-23T11:21:23-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-188549%22&qt=morelikethis&rows=5
2025-02-23T11:21:23-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T11:21:23-05:00 DEBUG: Deserialized SOLR response
On the edge-Wiener index of the disjunctive product of simple graphs
The edge-Wiener index of a simple connected graph G is defined as the sum of distances between all pairs of edges of G where the distance between two edges in G is the distance between the corresponding vertices in the line graph of G. In this paper, we study the edge-Wiener index under the disjunct...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2020
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/188549 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The edge-Wiener index of a simple connected graph G is defined as the sum of distances between all pairs of edges of G where the distance between two edges in G is the distance between the corresponding vertices in the line graph of G. In this paper, we study the edge-Wiener index under the disjunctive product of graphs and apply our results to compute the edge-Wiener index for the disjunctive product of paths and cycles. |
---|