2025-02-23T10:58:34-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-188549%22&qt=morelikethis&rows=5
2025-02-23T10:58:34-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-188549%22&qt=morelikethis&rows=5
2025-02-23T10:58:34-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T10:58:34-05:00 DEBUG: Deserialized SOLR response

On the edge-Wiener index of the disjunctive product of simple graphs

The edge-Wiener index of a simple connected graph G is defined as the sum of distances between all pairs of edges of G where the distance between two edges in G is the distance between the corresponding vertices in the line graph of G. In this paper, we study the edge-Wiener index under the disjunct...

Full description

Saved in:
Bibliographic Details
Main Authors: Azari, M., Iranmanesh, A.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2020
Series:Algebra and Discrete Mathematics
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/188549
Tags: Add Tag
No Tags, Be the first to tag this record!
id irk-123456789-188549
record_format dspace
spelling irk-123456789-1885492023-03-08T01:26:59Z On the edge-Wiener index of the disjunctive product of simple graphs Azari, M. Iranmanesh, A. The edge-Wiener index of a simple connected graph G is defined as the sum of distances between all pairs of edges of G where the distance between two edges in G is the distance between the corresponding vertices in the line graph of G. In this paper, we study the edge-Wiener index under the disjunctive product of graphs and apply our results to compute the edge-Wiener index for the disjunctive product of paths and cycles. 2020 Article On the edge-Wiener index of the disjunctive product of simple graphs / M. Azari, A. Iranmanesh // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 1–14. — Бібліогр.: 24 назв. — англ. 1726-3255 DOI:10.12958/adm242 2010 MSC: 05C76, 05C12, 05C38 http://dspace.nbuv.gov.ua/handle/123456789/188549 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The edge-Wiener index of a simple connected graph G is defined as the sum of distances between all pairs of edges of G where the distance between two edges in G is the distance between the corresponding vertices in the line graph of G. In this paper, we study the edge-Wiener index under the disjunctive product of graphs and apply our results to compute the edge-Wiener index for the disjunctive product of paths and cycles.
format Article
author Azari, M.
Iranmanesh, A.
spellingShingle Azari, M.
Iranmanesh, A.
On the edge-Wiener index of the disjunctive product of simple graphs
Algebra and Discrete Mathematics
author_facet Azari, M.
Iranmanesh, A.
author_sort Azari, M.
title On the edge-Wiener index of the disjunctive product of simple graphs
title_short On the edge-Wiener index of the disjunctive product of simple graphs
title_full On the edge-Wiener index of the disjunctive product of simple graphs
title_fullStr On the edge-Wiener index of the disjunctive product of simple graphs
title_full_unstemmed On the edge-Wiener index of the disjunctive product of simple graphs
title_sort on the edge-wiener index of the disjunctive product of simple graphs
publisher Інститут прикладної математики і механіки НАН України
publishDate 2020
url http://dspace.nbuv.gov.ua/handle/123456789/188549
citation_txt On the edge-Wiener index of the disjunctive product of simple graphs / M. Azari, A. Iranmanesh // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 1–14. — Бібліогр.: 24 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT azarim ontheedgewienerindexofthedisjunctiveproductofsimplegraphs
AT iranmanesha ontheedgewienerindexofthedisjunctiveproductofsimplegraphs
first_indexed 2023-10-18T23:08:37Z
last_indexed 2023-10-18T23:08:37Z
_version_ 1796157359894036480