2025-02-23T10:58:34-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-188549%22&qt=morelikethis&rows=5
2025-02-23T10:58:34-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-188549%22&qt=morelikethis&rows=5
2025-02-23T10:58:34-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T10:58:34-05:00 DEBUG: Deserialized SOLR response
On the edge-Wiener index of the disjunctive product of simple graphs
The edge-Wiener index of a simple connected graph G is defined as the sum of distances between all pairs of edges of G where the distance between two edges in G is the distance between the corresponding vertices in the line graph of G. In this paper, we study the edge-Wiener index under the disjunct...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2020
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/188549 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
irk-123456789-188549 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1885492023-03-08T01:26:59Z On the edge-Wiener index of the disjunctive product of simple graphs Azari, M. Iranmanesh, A. The edge-Wiener index of a simple connected graph G is defined as the sum of distances between all pairs of edges of G where the distance between two edges in G is the distance between the corresponding vertices in the line graph of G. In this paper, we study the edge-Wiener index under the disjunctive product of graphs and apply our results to compute the edge-Wiener index for the disjunctive product of paths and cycles. 2020 Article On the edge-Wiener index of the disjunctive product of simple graphs / M. Azari, A. Iranmanesh // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 1–14. — Бібліогр.: 24 назв. — англ. 1726-3255 DOI:10.12958/adm242 2010 MSC: 05C76, 05C12, 05C38 http://dspace.nbuv.gov.ua/handle/123456789/188549 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The edge-Wiener index of a simple connected graph G is defined as the sum of distances between all pairs of edges of G where the distance between two edges in G is the distance between the corresponding vertices in the line graph of G. In this paper, we study the edge-Wiener index under the disjunctive product of graphs and apply our results to compute the edge-Wiener index for the disjunctive product of paths and cycles. |
format |
Article |
author |
Azari, M. Iranmanesh, A. |
spellingShingle |
Azari, M. Iranmanesh, A. On the edge-Wiener index of the disjunctive product of simple graphs Algebra and Discrete Mathematics |
author_facet |
Azari, M. Iranmanesh, A. |
author_sort |
Azari, M. |
title |
On the edge-Wiener index of the disjunctive product of simple graphs |
title_short |
On the edge-Wiener index of the disjunctive product of simple graphs |
title_full |
On the edge-Wiener index of the disjunctive product of simple graphs |
title_fullStr |
On the edge-Wiener index of the disjunctive product of simple graphs |
title_full_unstemmed |
On the edge-Wiener index of the disjunctive product of simple graphs |
title_sort |
on the edge-wiener index of the disjunctive product of simple graphs |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2020 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/188549 |
citation_txt |
On the edge-Wiener index of the disjunctive product of simple graphs / M. Azari, A. Iranmanesh // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 1–14. — Бібліогр.: 24 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT azarim ontheedgewienerindexofthedisjunctiveproductofsimplegraphs AT iranmanesha ontheedgewienerindexofthedisjunctiveproductofsimplegraphs |
first_indexed |
2023-10-18T23:08:37Z |
last_indexed |
2023-10-18T23:08:37Z |
_version_ |
1796157359894036480 |