2025-02-22T10:03:21-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-188550%22&qt=morelikethis&rows=5
2025-02-22T10:03:21-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-188550%22&qt=morelikethis&rows=5
2025-02-22T10:03:21-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T10:03:21-05:00 DEBUG: Deserialized SOLR response

Zero-sum subsets of decomposable sets in Abelian groups

A subset D of an abelian group is decomposable if ∅ ≠ D ⊂ D + D. In the paper we give partial answers to an open problem asking whether every finite decomposable subset D of an abelian group contains a non-empty subset Z ⊂ D with ∑Z = 0.

Saved in:
Bibliographic Details
Main Authors: Banakh, T., Ravsky, A.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2020
Series:Algebra and Discrete Mathematics
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/188550
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A subset D of an abelian group is decomposable if ∅ ≠ D ⊂ D + D. In the paper we give partial answers to an open problem asking whether every finite decomposable subset D of an abelian group contains a non-empty subset Z ⊂ D with ∑Z = 0.