Gentle m-Calabi-Yau tilted algebras

We prove that all gentle 2-Calabi–Yau tilted algebras are Jacobian, moreover their bound quiver can be obtained via block decomposition. For two related families, the m-cluster-tilted algebras of type A and à , we prove that a module M is stable Cohen-Macaulay if and only if Ωᵐ⁺¹τM ≃ M.

Збережено в:
Бібліографічні деталі
Дата:2020
Автор: Garcia Elsener, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2020
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/188552
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Gentle m-Calabi-Yau tilted algebras / A. Garcia Elsener // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 44–62. — Бібліогр.: 28 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We prove that all gentle 2-Calabi–Yau tilted algebras are Jacobian, moreover their bound quiver can be obtained via block decomposition. For two related families, the m-cluster-tilted algebras of type A and à , we prove that a module M is stable Cohen-Macaulay if and only if Ωᵐ⁺¹τM ≃ M.