2025-02-23T09:38:01-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-188552%22&qt=morelikethis&rows=5
2025-02-23T09:38:01-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-188552%22&qt=morelikethis&rows=5
2025-02-23T09:38:01-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T09:38:01-05:00 DEBUG: Deserialized SOLR response
Gentle m-Calabi-Yau tilted algebras
We prove that all gentle 2-Calabi–Yau tilted algebras are Jacobian, moreover their bound quiver can be obtained via block decomposition. For two related families, the m-cluster-tilted algebras of type A and à , we prove that a module M is stable Cohen-Macaulay if and only if Ωᵐ⁺¹τM ≃ M.
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2020
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/188552 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
irk-123456789-188552 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1885522023-03-06T01:26:56Z Gentle m-Calabi-Yau tilted algebras Garcia Elsener, A. We prove that all gentle 2-Calabi–Yau tilted algebras are Jacobian, moreover their bound quiver can be obtained via block decomposition. For two related families, the m-cluster-tilted algebras of type A and à , we prove that a module M is stable Cohen-Macaulay if and only if Ωᵐ⁺¹τM ≃ M. 2020 Article Gentle m-Calabi-Yau tilted algebras / A. Garcia Elsener // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 44–62. — Бібліогр.: 28 назв. — англ. 1726-3255 DOI:10.12958/adm1423 http://dspace.nbuv.gov.ua/handle/123456789/188552 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We prove that all gentle 2-Calabi–Yau tilted algebras are Jacobian, moreover their bound quiver can be obtained via block decomposition. For two related families, the m-cluster-tilted algebras of type A and à , we prove that a module M is stable Cohen-Macaulay if and only if Ωᵐ⁺¹τM ≃ M. |
format |
Article |
author |
Garcia Elsener, A. |
spellingShingle |
Garcia Elsener, A. Gentle m-Calabi-Yau tilted algebras Algebra and Discrete Mathematics |
author_facet |
Garcia Elsener, A. |
author_sort |
Garcia Elsener, A. |
title |
Gentle m-Calabi-Yau tilted algebras |
title_short |
Gentle m-Calabi-Yau tilted algebras |
title_full |
Gentle m-Calabi-Yau tilted algebras |
title_fullStr |
Gentle m-Calabi-Yau tilted algebras |
title_full_unstemmed |
Gentle m-Calabi-Yau tilted algebras |
title_sort |
gentle m-calabi-yau tilted algebras |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2020 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/188552 |
citation_txt |
Gentle m-Calabi-Yau tilted algebras / A. Garcia Elsener // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 44–62. — Бібліогр.: 28 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT garciaelsenera gentlemcalabiyautiltedalgebras |
first_indexed |
2023-10-18T23:08:37Z |
last_indexed |
2023-10-18T23:08:37Z |
_version_ |
1796157360209657856 |