Witt equivalence of function fields of conics

Two fields are Witt equivalent if, roughly speaking, they have the same quadratic form theory. Formally, that is to say that their Witt rings of symmetric bilinear forms are isomorphic. This equivalence is well understood only in a few rather specific classes of fields. Two such classes, namely func...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2020
Автори: Gladki, P., Marshall, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2020
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/188553
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Witt equivalence of function fields of conics / P. Gladki, M. Marshall // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 63–78. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-188553
record_format dspace
spelling irk-123456789-1885532023-03-06T01:27:07Z Witt equivalence of function fields of conics Gladki, P. Marshall, M. Two fields are Witt equivalent if, roughly speaking, they have the same quadratic form theory. Formally, that is to say that their Witt rings of symmetric bilinear forms are isomorphic. This equivalence is well understood only in a few rather specific classes of fields. Two such classes, namely function fields over global fields and function fields of curves over local fields, were investigated by the authors in their earlier works [5] and [6]. In the present work, which can be viewed as a sequel to the earlier papers, we discuss the previously obtained results in the specific case of function fields of conic sections, and apply them to provide a few theorems of a somewhat quantitive flavour shedding some light on the question of numbers of Witt non-equivalent classes of such fields. 2020 Article Witt equivalence of function fields of conics / P. Gladki, M. Marshall // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 63–78. — Бібліогр.: 20 назв. — англ. 1726-3255 DOI:10.12958/adm1271 2000 MSC: Primary 11E81, 12J20; Secondary 11E04, 11E12 http://dspace.nbuv.gov.ua/handle/123456789/188553 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Two fields are Witt equivalent if, roughly speaking, they have the same quadratic form theory. Formally, that is to say that their Witt rings of symmetric bilinear forms are isomorphic. This equivalence is well understood only in a few rather specific classes of fields. Two such classes, namely function fields over global fields and function fields of curves over local fields, were investigated by the authors in their earlier works [5] and [6]. In the present work, which can be viewed as a sequel to the earlier papers, we discuss the previously obtained results in the specific case of function fields of conic sections, and apply them to provide a few theorems of a somewhat quantitive flavour shedding some light on the question of numbers of Witt non-equivalent classes of such fields.
format Article
author Gladki, P.
Marshall, M.
spellingShingle Gladki, P.
Marshall, M.
Witt equivalence of function fields of conics
Algebra and Discrete Mathematics
author_facet Gladki, P.
Marshall, M.
author_sort Gladki, P.
title Witt equivalence of function fields of conics
title_short Witt equivalence of function fields of conics
title_full Witt equivalence of function fields of conics
title_fullStr Witt equivalence of function fields of conics
title_full_unstemmed Witt equivalence of function fields of conics
title_sort witt equivalence of function fields of conics
publisher Інститут прикладної математики і механіки НАН України
publishDate 2020
url http://dspace.nbuv.gov.ua/handle/123456789/188553
citation_txt Witt equivalence of function fields of conics / P. Gladki, M. Marshall // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 63–78. — Бібліогр.: 20 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT gladkip wittequivalenceoffunctionfieldsofconics
AT marshallm wittequivalenceoffunctionfieldsofconics
first_indexed 2023-10-18T23:08:37Z
last_indexed 2023-10-18T23:08:37Z
_version_ 1796157360315564032