On growth of generalized Grigorchuk's overgroups

Grigorchuk’s Overgroup Ĝ, is a branch group of intermediate growth. It contains the first Grigorchuk’s torsion group G of intermediate growth constructed in 1980, but also has elements of infinite order. Its growth is substantially greater than the growth of G. The group G, corresponding to the sequ...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2020
Автор: Samarakoon, S.T.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2020
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/188556
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On growth of generalized Grigorchuk's overgroups / S.T. Samarakoon // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 97–117. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-188556
record_format dspace
spelling irk-123456789-1885562023-03-07T01:26:54Z On growth of generalized Grigorchuk's overgroups Samarakoon, S.T. Grigorchuk’s Overgroup Ĝ, is a branch group of intermediate growth. It contains the first Grigorchuk’s torsion group G of intermediate growth constructed in 1980, but also has elements of infinite order. Its growth is substantially greater than the growth of G. The group G, corresponding to the sequence (012)∞ = 012012 . . ., is a member of the family {Gω|ω ∈ Ω = {0, 1, 2}ᴺ} consisting of groups of intermediate growth when sequence ω is not eventually constant. Following this construction, we define the family { Ĝω, ω ∈ Ω} of generalized overgroups. Then Ĝ = Ĝ (012)∞ and Gω is a subgroup of Ĝω for each ω ∈ Ω. We prove, if ω is eventually constant, then Ĝω is of polynomial growth and if ω is not eventually constant, then Ĝω is of intermediate growth. 2020 Article On growth of generalized Grigorchuk's overgroups / S.T. Samarakoon // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 97–117. — Бібліогр.: 20 назв. — англ. 1726-3255 DOI:10.12958/adm1451 2010 MSC: 20E08 http://dspace.nbuv.gov.ua/handle/123456789/188556 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Grigorchuk’s Overgroup Ĝ, is a branch group of intermediate growth. It contains the first Grigorchuk’s torsion group G of intermediate growth constructed in 1980, but also has elements of infinite order. Its growth is substantially greater than the growth of G. The group G, corresponding to the sequence (012)∞ = 012012 . . ., is a member of the family {Gω|ω ∈ Ω = {0, 1, 2}ᴺ} consisting of groups of intermediate growth when sequence ω is not eventually constant. Following this construction, we define the family { Ĝω, ω ∈ Ω} of generalized overgroups. Then Ĝ = Ĝ (012)∞ and Gω is a subgroup of Ĝω for each ω ∈ Ω. We prove, if ω is eventually constant, then Ĝω is of polynomial growth and if ω is not eventually constant, then Ĝω is of intermediate growth.
format Article
author Samarakoon, S.T.
spellingShingle Samarakoon, S.T.
On growth of generalized Grigorchuk's overgroups
Algebra and Discrete Mathematics
author_facet Samarakoon, S.T.
author_sort Samarakoon, S.T.
title On growth of generalized Grigorchuk's overgroups
title_short On growth of generalized Grigorchuk's overgroups
title_full On growth of generalized Grigorchuk's overgroups
title_fullStr On growth of generalized Grigorchuk's overgroups
title_full_unstemmed On growth of generalized Grigorchuk's overgroups
title_sort on growth of generalized grigorchuk's overgroups
publisher Інститут прикладної математики і механіки НАН України
publishDate 2020
url http://dspace.nbuv.gov.ua/handle/123456789/188556
citation_txt On growth of generalized Grigorchuk's overgroups / S.T. Samarakoon // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 97–117. — Бібліогр.: 20 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT samarakoonst ongrowthofgeneralizedgrigorchuksovergroups
first_indexed 2023-10-18T23:08:38Z
last_indexed 2023-10-18T23:08:38Z
_version_ 1796157360631185408