Modules with minimax Cousin cohomologies
Let R be a commutative Noetherian ring with non-zero identity and let X be an arbitrary R-module. In this paper, we show that if all the cohomology modules of the Cousin complex for X are minimax, then the following hold for any prime ideal p of R and for every integer n less than X—the height of p:...
Збережено в:
Дата: | 2020 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2020
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/188558 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Modules with minimax Cousin cohomologies / A. Vahidi // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 143–149. — Бібліогр.: 16 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-188558 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1885582023-03-06T01:27:05Z Modules with minimax Cousin cohomologies Vahidi, A. Let R be a commutative Noetherian ring with non-zero identity and let X be an arbitrary R-module. In this paper, we show that if all the cohomology modules of the Cousin complex for X are minimax, then the following hold for any prime ideal p of R and for every integer n less than X—the height of p: (i) the nth Bass number of X with respect to p is finite; (ii) the nth local cohomology module of Xp with respect to pRp is Artinian. 2020 Article Modules with minimax Cousin cohomologies / A. Vahidi // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 143–149. — Бібліогр.: 16 назв. — англ. 1726-3255 DOI:10.12958/adm528 2010 MSC: 13D02, 13D03, 13D45, 13E10. http://dspace.nbuv.gov.ua/handle/123456789/188558 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Let R be a commutative Noetherian ring with non-zero identity and let X be an arbitrary R-module. In this paper, we show that if all the cohomology modules of the Cousin complex for X are minimax, then the following hold for any prime ideal p of R and for every integer n less than X—the height of p: (i) the nth Bass number of X with respect to p is finite; (ii) the nth local cohomology module of Xp with respect to pRp is Artinian. |
format |
Article |
author |
Vahidi, A. |
spellingShingle |
Vahidi, A. Modules with minimax Cousin cohomologies Algebra and Discrete Mathematics |
author_facet |
Vahidi, A. |
author_sort |
Vahidi, A. |
title |
Modules with minimax Cousin cohomologies |
title_short |
Modules with minimax Cousin cohomologies |
title_full |
Modules with minimax Cousin cohomologies |
title_fullStr |
Modules with minimax Cousin cohomologies |
title_full_unstemmed |
Modules with minimax Cousin cohomologies |
title_sort |
modules with minimax cousin cohomologies |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2020 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/188558 |
citation_txt |
Modules with minimax Cousin cohomologies / A. Vahidi // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 143–149. — Бібліогр.: 16 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT vahidia moduleswithminimaxcousincohomologies |
first_indexed |
2023-10-18T23:08:38Z |
last_indexed |
2023-10-18T23:08:38Z |
_version_ |
1796157360841949184 |