On a product of two formational tcc-subgroups
A subgroup A of a group G is called tcc-subgroup in G, if there is a subgroup T of G such that G = AT and for any X ≤ A and Y ≤ T there exists an element u ∈ hX, Y i such that XYᵘ ≤ G. The notation H ≤ G means that H is a subgroup of a group G. In this paper we consider a group G = AB such that A a...
Збережено в:
Дата: | 2020 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2020
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/188571 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On a product of two formational tcc-subgroups / A. Trofimuk // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 2. — С. 282–289. — Бібліогр.: 15 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-188571 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1885712023-03-07T01:26:58Z On a product of two formational tcc-subgroups Trofimuk, A. A subgroup A of a group G is called tcc-subgroup in G, if there is a subgroup T of G such that G = AT and for any X ≤ A and Y ≤ T there exists an element u ∈ hX, Y i such that XYᵘ ≤ G. The notation H ≤ G means that H is a subgroup of a group G. In this paper we consider a group G = AB such that A and B are tcc-subgroups in G. We prove that G belongs to F, when A and B belong to F and F is a saturated formation of soluble groups such that U ⊆ F. Here U is the formation of all supersoluble groups. 2020 Article On a product of two formational tcc-subgroups / A. Trofimuk // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 2. — С. 282–289. — Бібліогр.: 15 назв. — англ. 1726-3255 DOI:10.12958/adm1396 2010 MSC: 20D10. http://dspace.nbuv.gov.ua/handle/123456789/188571 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A subgroup A of a group G is called tcc-subgroup in G, if there is a subgroup T of G such that G = AT and for any X ≤ A and Y ≤ T there exists an element u ∈ hX, Y i such that XYᵘ ≤ G. The notation H ≤ G means that H is a subgroup of a group G. In this paper we consider a group G = AB such that A and B are tcc-subgroups in G. We prove that G belongs to F, when A and B belong to F and F is a saturated formation of soluble groups such that U ⊆ F. Here U is the formation of all supersoluble groups. |
format |
Article |
author |
Trofimuk, A. |
spellingShingle |
Trofimuk, A. On a product of two formational tcc-subgroups Algebra and Discrete Mathematics |
author_facet |
Trofimuk, A. |
author_sort |
Trofimuk, A. |
title |
On a product of two formational tcc-subgroups |
title_short |
On a product of two formational tcc-subgroups |
title_full |
On a product of two formational tcc-subgroups |
title_fullStr |
On a product of two formational tcc-subgroups |
title_full_unstemmed |
On a product of two formational tcc-subgroups |
title_sort |
on a product of two formational tcc-subgroups |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2020 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/188571 |
citation_txt |
On a product of two formational tcc-subgroups / A. Trofimuk // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 2. — С. 282–289. — Бібліогр.: 15 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT trofimuka onaproductoftwoformationaltccsubgroups |
first_indexed |
2023-10-18T23:08:40Z |
last_indexed |
2023-10-18T23:08:40Z |
_version_ |
1796157362207195136 |