On a product of two formational tcc-subgroups

A subgroup A of a group G is called tcc-subgroup in G, if there is a subgroup T of G such that G = AT and for any X ≤ A and Y ≤ T there exists an element u ∈ hX, Y i such that XYᵘ ≤ G. The notation H ≤ G means that H is a subgroup of a group G. In this paper we consider a group G = AB such that A a...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2020
Автор: Trofimuk, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2020
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/188571
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On a product of two formational tcc-subgroups / A. Trofimuk // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 2. — С. 282–289. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-188571
record_format dspace
spelling irk-123456789-1885712023-03-07T01:26:58Z On a product of two formational tcc-subgroups Trofimuk, A. A subgroup A of a group G is called tcc-subgroup in G, if there is a subgroup T of G such that G = AT and for any X ≤ A and Y ≤ T there exists an element u ∈ hX, Y i such that XYᵘ ≤ G. The notation H ≤ G means that H is a subgroup of a group G. In this paper we consider a group G = AB such that A and B are tcc-subgroups in G. We prove that G belongs to F, when A and B belong to F and F is a saturated formation of soluble groups such that U ⊆ F. Here U is the formation of all supersoluble groups. 2020 Article On a product of two formational tcc-subgroups / A. Trofimuk // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 2. — С. 282–289. — Бібліогр.: 15 назв. — англ. 1726-3255 DOI:10.12958/adm1396 2010 MSC: 20D10. http://dspace.nbuv.gov.ua/handle/123456789/188571 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A subgroup A of a group G is called tcc-subgroup in G, if there is a subgroup T of G such that G = AT and for any X ≤ A and Y ≤ T there exists an element u ∈ hX, Y i such that XYᵘ ≤ G. The notation H ≤ G means that H is a subgroup of a group G. In this paper we consider a group G = AB such that A and B are tcc-subgroups in G. We prove that G belongs to F, when A and B belong to F and F is a saturated formation of soluble groups such that U ⊆ F. Here U is the formation of all supersoluble groups.
format Article
author Trofimuk, A.
spellingShingle Trofimuk, A.
On a product of two formational tcc-subgroups
Algebra and Discrete Mathematics
author_facet Trofimuk, A.
author_sort Trofimuk, A.
title On a product of two formational tcc-subgroups
title_short On a product of two formational tcc-subgroups
title_full On a product of two formational tcc-subgroups
title_fullStr On a product of two formational tcc-subgroups
title_full_unstemmed On a product of two formational tcc-subgroups
title_sort on a product of two formational tcc-subgroups
publisher Інститут прикладної математики і механіки НАН України
publishDate 2020
url http://dspace.nbuv.gov.ua/handle/123456789/188571
citation_txt On a product of two formational tcc-subgroups / A. Trofimuk // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 2. — С. 282–289. — Бібліогр.: 15 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT trofimuka onaproductoftwoformationaltccsubgroups
first_indexed 2023-10-18T23:08:40Z
last_indexed 2023-10-18T23:08:40Z
_version_ 1796157362207195136