On extension of classical Baer results to Poisson algebras

In this paper we prove that if P is a Poisson algebra and the n-th hypercenter (center) of P has a finite codimension, then P includes a finite-dimensional ideal K such that P/K is nilpotent (abelian). As a corollary, we show that if the n-th hypercenter of a Poisson algebra P (over some specific fi...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2021
Автори: Kurdachenko, L.A., Pypka, A.A., Subbotin I.Ya.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2021
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/188679
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On extension of classical Baer results to Poisson algebras / L.A. Kurdachenko, A.A. Pypka, I.Ya. Subbotin // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 1. — С. 84–108. — Бібліогр.: 52 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-188679
record_format dspace
spelling irk-123456789-1886792023-03-12T01:28:50Z On extension of classical Baer results to Poisson algebras Kurdachenko, L.A. Pypka, A.A. Subbotin I.Ya. In this paper we prove that if P is a Poisson algebra and the n-th hypercenter (center) of P has a finite codimension, then P includes a finite-dimensional ideal K such that P/K is nilpotent (abelian). As a corollary, we show that if the n-th hypercenter of a Poisson algebra P (over some specific field) has a finite codimension and P does not contain zero divisors, then P is an abelian algebra. 2021 Article On extension of classical Baer results to Poisson algebras / L.A. Kurdachenko, A.A. Pypka, I.Ya. Subbotin // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 1. — С. 84–108. — Бібліогр.: 52 назв. — англ. 1726-3255 DOI:10.12958/adm1758 2020 MSC: 17B63,17B65. http://dspace.nbuv.gov.ua/handle/123456789/188679 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper we prove that if P is a Poisson algebra and the n-th hypercenter (center) of P has a finite codimension, then P includes a finite-dimensional ideal K such that P/K is nilpotent (abelian). As a corollary, we show that if the n-th hypercenter of a Poisson algebra P (over some specific field) has a finite codimension and P does not contain zero divisors, then P is an abelian algebra.
format Article
author Kurdachenko, L.A.
Pypka, A.A.
Subbotin I.Ya.
spellingShingle Kurdachenko, L.A.
Pypka, A.A.
Subbotin I.Ya.
On extension of classical Baer results to Poisson algebras
Algebra and Discrete Mathematics
author_facet Kurdachenko, L.A.
Pypka, A.A.
Subbotin I.Ya.
author_sort Kurdachenko, L.A.
title On extension of classical Baer results to Poisson algebras
title_short On extension of classical Baer results to Poisson algebras
title_full On extension of classical Baer results to Poisson algebras
title_fullStr On extension of classical Baer results to Poisson algebras
title_full_unstemmed On extension of classical Baer results to Poisson algebras
title_sort on extension of classical baer results to poisson algebras
publisher Інститут прикладної математики і механіки НАН України
publishDate 2021
url http://dspace.nbuv.gov.ua/handle/123456789/188679
citation_txt On extension of classical Baer results to Poisson algebras / L.A. Kurdachenko, A.A. Pypka, I.Ya. Subbotin // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 1. — С. 84–108. — Бібліогр.: 52 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT kurdachenkola onextensionofclassicalbaerresultstopoissonalgebras
AT pypkaaa onextensionofclassicalbaerresultstopoissonalgebras
AT subbotiniya onextensionofclassicalbaerresultstopoissonalgebras
first_indexed 2023-10-18T23:08:54Z
last_indexed 2023-10-18T23:08:54Z
_version_ 1796157372027109376