Injective stabilization of additive functors, III. Asymptotic stabilization of the tensor product

The injective stabilization of the tensor product is subjected to an iterative procedure that utilizes its bifunctor property. The limit of this procedure, called the asymptotic stabilization of the tensor product, provides a homological counterpart of Buchweitz’s asymptotic construction of stable c...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2021
Автори: Martsinkovsky, A., Russell, J.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2021
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/188681
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Injective stabilization of additive functors, III. Asymptotic stabilization of the tensor product / A. Martsinkovsky, J. Russell // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 1. — С. 120–151. — Бібліогр.: 17 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-188681
record_format dspace
spelling irk-123456789-1886812023-03-12T01:29:01Z Injective stabilization of additive functors, III. Asymptotic stabilization of the tensor product Martsinkovsky, A. Russell, J. The injective stabilization of the tensor product is subjected to an iterative procedure that utilizes its bifunctor property. The limit of this procedure, called the asymptotic stabilization of the tensor product, provides a homological counterpart of Buchweitz’s asymptotic construction of stable cohomology. The resulting connected sequence of functors is isomorphic to Triulzi’s J-completion of the Tor functor. A comparison map from Vogel homology to the asymptotic stabilization of the tensor product is constructed and shown to be always epic. The category of finitely presented functors is shown to be complete and cocomplete. As a consequence, the inert injective stabilization of the tensor product with fixed variable a finitely generated module over an artin algebra is shown to be finitely presented. Its defect and consequently all right-derived functors are determined. New notions of asymptotic torsion and cotorsion are introduced and are related to each other. 2021 Article Injective stabilization of additive functors, III. Asymptotic stabilization of the tensor product / A. Martsinkovsky, J. Russell // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 1. — С. 120–151. — Бібліогр.: 17 назв. — англ. 1726-3255 DOI:10.12958/adm1728 2020 MSC: Primary 16E30. http://dspace.nbuv.gov.ua/handle/123456789/188681 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The injective stabilization of the tensor product is subjected to an iterative procedure that utilizes its bifunctor property. The limit of this procedure, called the asymptotic stabilization of the tensor product, provides a homological counterpart of Buchweitz’s asymptotic construction of stable cohomology. The resulting connected sequence of functors is isomorphic to Triulzi’s J-completion of the Tor functor. A comparison map from Vogel homology to the asymptotic stabilization of the tensor product is constructed and shown to be always epic. The category of finitely presented functors is shown to be complete and cocomplete. As a consequence, the inert injective stabilization of the tensor product with fixed variable a finitely generated module over an artin algebra is shown to be finitely presented. Its defect and consequently all right-derived functors are determined. New notions of asymptotic torsion and cotorsion are introduced and are related to each other.
format Article
author Martsinkovsky, A.
Russell, J.
spellingShingle Martsinkovsky, A.
Russell, J.
Injective stabilization of additive functors, III. Asymptotic stabilization of the tensor product
Algebra and Discrete Mathematics
author_facet Martsinkovsky, A.
Russell, J.
author_sort Martsinkovsky, A.
title Injective stabilization of additive functors, III. Asymptotic stabilization of the tensor product
title_short Injective stabilization of additive functors, III. Asymptotic stabilization of the tensor product
title_full Injective stabilization of additive functors, III. Asymptotic stabilization of the tensor product
title_fullStr Injective stabilization of additive functors, III. Asymptotic stabilization of the tensor product
title_full_unstemmed Injective stabilization of additive functors, III. Asymptotic stabilization of the tensor product
title_sort injective stabilization of additive functors, iii. asymptotic stabilization of the tensor product
publisher Інститут прикладної математики і механіки НАН України
publishDate 2021
url http://dspace.nbuv.gov.ua/handle/123456789/188681
citation_txt Injective stabilization of additive functors, III. Asymptotic stabilization of the tensor product / A. Martsinkovsky, J. Russell // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 1. — С. 120–151. — Бібліогр.: 17 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT martsinkovskya injectivestabilizationofadditivefunctorsiiiasymptoticstabilizationofthetensorproduct
AT russellj injectivestabilizationofadditivefunctorsiiiasymptoticstabilizationofthetensorproduct
first_indexed 2023-10-18T23:08:54Z
last_indexed 2023-10-18T23:08:54Z
_version_ 1796157372237873152