Groups containing locally maximal product-free sets of size 4

Every locally maximal product-free set S in a finite group G satisfies G = S ∪ SS ∪ S⁻¹S ∪ SS⁻¹ ∪ √S, where SS = {xy | x, y ∈ S}, S⁻¹S = {x⁻¹y | x, y ∈ S}, SS⁻¹ = {xy⁻¹ | x, y ∈ S} and √S = {x ∈ G | x² ∈ S}. To better understand locally maximal product-free sets, Bertram asked whether every locally...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2021
Автор: Anabanti, C.S.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2021
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/188705
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Groups containing locally maximal product-free sets of size 4 / C.S. Anabanti // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 167–194. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-188705
record_format dspace
spelling irk-123456789-1887052023-03-12T01:28:56Z Groups containing locally maximal product-free sets of size 4 Anabanti, C.S. Every locally maximal product-free set S in a finite group G satisfies G = S ∪ SS ∪ S⁻¹S ∪ SS⁻¹ ∪ √S, where SS = {xy | x, y ∈ S}, S⁻¹S = {x⁻¹y | x, y ∈ S}, SS⁻¹ = {xy⁻¹ | x, y ∈ S} and √S = {x ∈ G | x² ∈ S}. To better understand locally maximal product-free sets, Bertram asked whether every locally maximal product-free set S in a finite abelian group satisfy |√S| ≤ 2|S|. This question was recently answered in the negation by the current author. Here, we improve some results on the structures and sizes of finite groups in terms of their locally maximal product-free sets. A consequence of our results is the classification of abelian groups that contain locally maximal product-free sets of size 4, continuing the work of Street, Whitehead, Giudici and Hart on the classification of groups containing locally maximal product-free sets of small sizes. We also obtain partial results on arbitrary groups containing locally maximal product-free sets of size 4, and conclude with a conjecture on the size 4 problem as well as an open problem on the general case. 2021 Article Groups containing locally maximal product-free sets of size 4 / C.S. Anabanti // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 167–194. — Бібліогр.: 12 назв. — англ. 1726-3255 DOI:10.12958/adm1347 2020 MSC: 20D60, 05E15, 11B75 http://dspace.nbuv.gov.ua/handle/123456789/188705 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Every locally maximal product-free set S in a finite group G satisfies G = S ∪ SS ∪ S⁻¹S ∪ SS⁻¹ ∪ √S, where SS = {xy | x, y ∈ S}, S⁻¹S = {x⁻¹y | x, y ∈ S}, SS⁻¹ = {xy⁻¹ | x, y ∈ S} and √S = {x ∈ G | x² ∈ S}. To better understand locally maximal product-free sets, Bertram asked whether every locally maximal product-free set S in a finite abelian group satisfy |√S| ≤ 2|S|. This question was recently answered in the negation by the current author. Here, we improve some results on the structures and sizes of finite groups in terms of their locally maximal product-free sets. A consequence of our results is the classification of abelian groups that contain locally maximal product-free sets of size 4, continuing the work of Street, Whitehead, Giudici and Hart on the classification of groups containing locally maximal product-free sets of small sizes. We also obtain partial results on arbitrary groups containing locally maximal product-free sets of size 4, and conclude with a conjecture on the size 4 problem as well as an open problem on the general case.
format Article
author Anabanti, C.S.
spellingShingle Anabanti, C.S.
Groups containing locally maximal product-free sets of size 4
Algebra and Discrete Mathematics
author_facet Anabanti, C.S.
author_sort Anabanti, C.S.
title Groups containing locally maximal product-free sets of size 4
title_short Groups containing locally maximal product-free sets of size 4
title_full Groups containing locally maximal product-free sets of size 4
title_fullStr Groups containing locally maximal product-free sets of size 4
title_full_unstemmed Groups containing locally maximal product-free sets of size 4
title_sort groups containing locally maximal product-free sets of size 4
publisher Інститут прикладної математики і механіки НАН України
publishDate 2021
url http://dspace.nbuv.gov.ua/handle/123456789/188705
citation_txt Groups containing locally maximal product-free sets of size 4 / C.S. Anabanti // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 167–194. — Бібліогр.: 12 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT anabantics groupscontaininglocallymaximalproductfreesetsofsize4
first_indexed 2023-10-18T23:08:58Z
last_indexed 2023-10-18T23:08:58Z
_version_ 1796157374803738624