On (co)pure Baer injective modules

For a given class of R-modules Q, a module M is called Q-copure Baer injective if any map from a Q-copure left ideal of R into M can be extended to a map from R into M. Depending on the class Q, this concept is both a dualization and a generalization of pure Baer injectivity. We show that every modu...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2021
Автор: Hamid, M.F.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2021
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/188708
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On (co)pure Baer injective modules / M.F. Hamid // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 219–226. — Бібліогр.: 4 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-188708
record_format dspace
spelling irk-123456789-1887082023-03-12T01:28:58Z On (co)pure Baer injective modules Hamid, M.F. For a given class of R-modules Q, a module M is called Q-copure Baer injective if any map from a Q-copure left ideal of R into M can be extended to a map from R into M. Depending on the class Q, this concept is both a dualization and a generalization of pure Baer injectivity. We show that every module can be embedded as Q-copure submodule of a Q-copure Baer injective module. Certain types of rings are characterized using properties of Q-copure Baer injective modules. For example a ring R is Q-coregular if and only if every Q-copure Baer injective R-module is injective. 2021 Article On (co)pure Baer injective modules / M.F. Hamid // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 219–226. — Бібліогр.: 4 назв. — англ. 1726-3255 DOI:10.12958/adm1209 2020 MSC: 16D50. http://dspace.nbuv.gov.ua/handle/123456789/188708 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description For a given class of R-modules Q, a module M is called Q-copure Baer injective if any map from a Q-copure left ideal of R into M can be extended to a map from R into M. Depending on the class Q, this concept is both a dualization and a generalization of pure Baer injectivity. We show that every module can be embedded as Q-copure submodule of a Q-copure Baer injective module. Certain types of rings are characterized using properties of Q-copure Baer injective modules. For example a ring R is Q-coregular if and only if every Q-copure Baer injective R-module is injective.
format Article
author Hamid, M.F.
spellingShingle Hamid, M.F.
On (co)pure Baer injective modules
Algebra and Discrete Mathematics
author_facet Hamid, M.F.
author_sort Hamid, M.F.
title On (co)pure Baer injective modules
title_short On (co)pure Baer injective modules
title_full On (co)pure Baer injective modules
title_fullStr On (co)pure Baer injective modules
title_full_unstemmed On (co)pure Baer injective modules
title_sort on (co)pure baer injective modules
publisher Інститут прикладної математики і механіки НАН України
publishDate 2021
url http://dspace.nbuv.gov.ua/handle/123456789/188708
citation_txt On (co)pure Baer injective modules / M.F. Hamid // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 219–226. — Бібліогр.: 4 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT hamidmf oncopurebaerinjectivemodules
first_indexed 2023-10-18T23:08:58Z
last_indexed 2023-10-18T23:08:58Z
_version_ 1796157375120408576