On (co)pure Baer injective modules
For a given class of R-modules Q, a module M is called Q-copure Baer injective if any map from a Q-copure left ideal of R into M can be extended to a map from R into M. Depending on the class Q, this concept is both a dualization and a generalization of pure Baer injectivity. We show that every modu...
Збережено в:
Дата: | 2021 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2021
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/188708 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On (co)pure Baer injective modules / M.F. Hamid // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 219–226. — Бібліогр.: 4 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-188708 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1887082023-03-12T01:28:58Z On (co)pure Baer injective modules Hamid, M.F. For a given class of R-modules Q, a module M is called Q-copure Baer injective if any map from a Q-copure left ideal of R into M can be extended to a map from R into M. Depending on the class Q, this concept is both a dualization and a generalization of pure Baer injectivity. We show that every module can be embedded as Q-copure submodule of a Q-copure Baer injective module. Certain types of rings are characterized using properties of Q-copure Baer injective modules. For example a ring R is Q-coregular if and only if every Q-copure Baer injective R-module is injective. 2021 Article On (co)pure Baer injective modules / M.F. Hamid // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 219–226. — Бібліогр.: 4 назв. — англ. 1726-3255 DOI:10.12958/adm1209 2020 MSC: 16D50. http://dspace.nbuv.gov.ua/handle/123456789/188708 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
For a given class of R-modules Q, a module M is called Q-copure Baer injective if any map from a Q-copure left ideal of R into M can be extended to a map from R into M. Depending on the class Q, this concept is both a dualization and a generalization of pure Baer injectivity. We show that every module can be embedded as Q-copure submodule of a Q-copure Baer injective module. Certain types of rings are characterized using properties of Q-copure Baer injective modules. For example a ring R is Q-coregular if and only if every Q-copure Baer injective R-module is injective. |
format |
Article |
author |
Hamid, M.F. |
spellingShingle |
Hamid, M.F. On (co)pure Baer injective modules Algebra and Discrete Mathematics |
author_facet |
Hamid, M.F. |
author_sort |
Hamid, M.F. |
title |
On (co)pure Baer injective modules |
title_short |
On (co)pure Baer injective modules |
title_full |
On (co)pure Baer injective modules |
title_fullStr |
On (co)pure Baer injective modules |
title_full_unstemmed |
On (co)pure Baer injective modules |
title_sort |
on (co)pure baer injective modules |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2021 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/188708 |
citation_txt |
On (co)pure Baer injective modules / M.F. Hamid // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 219–226. — Бібліогр.: 4 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT hamidmf oncopurebaerinjectivemodules |
first_indexed |
2023-10-18T23:08:58Z |
last_indexed |
2023-10-18T23:08:58Z |
_version_ |
1796157375120408576 |