Infinite transitivity on the Calogero-Moser space C₂

We prove a particular case of the conjecture of Berest–Eshmatov–Eshmatov by showing that the group of unimodular automorphisms of C[x, y] acts in an infinitely-transitive way on the Calogero-Moser space C₂.

Збережено в:
Бібліографічні деталі
Дата:2021
Автори: Kesten, J., Mathers, S., Normatov Z.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2021
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/188709
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Infinite transitivity on the Calogero-Moser space C₂ / J. Kesten, S. Mathers, Z. Normatov // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 227–250. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We prove a particular case of the conjecture of Berest–Eshmatov–Eshmatov by showing that the group of unimodular automorphisms of C[x, y] acts in an infinitely-transitive way on the Calogero-Moser space C₂.