2025-02-23T13:48:34-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-188709%22&qt=morelikethis&rows=5
2025-02-23T13:48:34-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-188709%22&qt=morelikethis&rows=5
2025-02-23T13:48:34-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T13:48:34-05:00 DEBUG: Deserialized SOLR response
Infinite transitivity on the Calogero-Moser space C₂
We prove a particular case of the conjecture of Berest–Eshmatov–Eshmatov by showing that the group of unimodular automorphisms of C[x, y] acts in an infinitely-transitive way on the Calogero-Moser space C₂.
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2021
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/188709 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
irk-123456789-188709 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1887092023-03-12T01:29:12Z Infinite transitivity on the Calogero-Moser space C₂ Kesten, J. Mathers, S. Normatov Z. We prove a particular case of the conjecture of Berest–Eshmatov–Eshmatov by showing that the group of unimodular automorphisms of C[x, y] acts in an infinitely-transitive way on the Calogero-Moser space C₂. 2021 Article Infinite transitivity on the Calogero-Moser space C₂ / J. Kesten, S. Mathers, Z. Normatov // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 227–250. — Бібліогр.: 5 назв. — англ. 1726-3255 DOI:10.12958/adm1656 2020 MSC: 14R20, 14L30, 14J50. http://dspace.nbuv.gov.ua/handle/123456789/188709 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We prove a particular case of the conjecture of Berest–Eshmatov–Eshmatov by showing that the group of unimodular automorphisms of C[x, y] acts in an infinitely-transitive way on the Calogero-Moser space C₂. |
format |
Article |
author |
Kesten, J. Mathers, S. Normatov Z. |
spellingShingle |
Kesten, J. Mathers, S. Normatov Z. Infinite transitivity on the Calogero-Moser space C₂ Algebra and Discrete Mathematics |
author_facet |
Kesten, J. Mathers, S. Normatov Z. |
author_sort |
Kesten, J. |
title |
Infinite transitivity on the Calogero-Moser space C₂ |
title_short |
Infinite transitivity on the Calogero-Moser space C₂ |
title_full |
Infinite transitivity on the Calogero-Moser space C₂ |
title_fullStr |
Infinite transitivity on the Calogero-Moser space C₂ |
title_full_unstemmed |
Infinite transitivity on the Calogero-Moser space C₂ |
title_sort |
infinite transitivity on the calogero-moser space c₂ |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2021 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/188709 |
citation_txt |
Infinite transitivity on the Calogero-Moser space C₂ / J. Kesten, S. Mathers, Z. Normatov // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 227–250. — Бібліогр.: 5 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT kestenj infinitetransitivityonthecalogeromoserspacec2 AT matherss infinitetransitivityonthecalogeromoserspacec2 AT normatovz infinitetransitivityonthecalogeromoserspacec2 |
first_indexed |
2023-10-18T23:08:59Z |
last_indexed |
2023-10-18T23:08:59Z |
_version_ |
1796157375226314752 |