The center of the wreath product of symmetric group algebras

We consider the wreath product of two symmetric groups as a group of blocks permutations and we study its conjugacy classes. We give a polynomiality property for the structure coefficients of the center of the wreath product of symmetric group algebras. This allows us to recover an old result of Far...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2021
Автор: Tout, O.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2021
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/188713
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The center of the wreath product of symmetric group algebras / O. Tout // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 302–322. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-188713
record_format dspace
spelling irk-123456789-1887132023-03-12T01:28:59Z The center of the wreath product of symmetric group algebras Tout, O. We consider the wreath product of two symmetric groups as a group of blocks permutations and we study its conjugacy classes. We give a polynomiality property for the structure coefficients of the center of the wreath product of symmetric group algebras. This allows us to recover an old result of Farahat and Higman about the polynomiality of the structure coefficients of the center of the symmetric group algebra and to generalize our recent result about the polynomiality property of the structure coefficients of the center of the hyperoctahedral group algebra. 2021 Article The center of the wreath product of symmetric group algebras / O. Tout // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 302–322. — Бібліогр.: 12 назв. — англ. 1726-3255 DOI:10.12958/adm1338 2020 MSC: 05E10, 05E16, 20C30. http://dspace.nbuv.gov.ua/handle/123456789/188713 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We consider the wreath product of two symmetric groups as a group of blocks permutations and we study its conjugacy classes. We give a polynomiality property for the structure coefficients of the center of the wreath product of symmetric group algebras. This allows us to recover an old result of Farahat and Higman about the polynomiality of the structure coefficients of the center of the symmetric group algebra and to generalize our recent result about the polynomiality property of the structure coefficients of the center of the hyperoctahedral group algebra.
format Article
author Tout, O.
spellingShingle Tout, O.
The center of the wreath product of symmetric group algebras
Algebra and Discrete Mathematics
author_facet Tout, O.
author_sort Tout, O.
title The center of the wreath product of symmetric group algebras
title_short The center of the wreath product of symmetric group algebras
title_full The center of the wreath product of symmetric group algebras
title_fullStr The center of the wreath product of symmetric group algebras
title_full_unstemmed The center of the wreath product of symmetric group algebras
title_sort center of the wreath product of symmetric group algebras
publisher Інститут прикладної математики і механіки НАН України
publishDate 2021
url http://dspace.nbuv.gov.ua/handle/123456789/188713
citation_txt The center of the wreath product of symmetric group algebras / O. Tout // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 302–322. — Бібліогр.: 12 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT touto thecenterofthewreathproductofsymmetricgroupalgebras
AT touto centerofthewreathproductofsymmetricgroupalgebras
first_indexed 2023-10-18T23:08:59Z
last_indexed 2023-10-18T23:08:59Z
_version_ 1796157375646793728