The center of the wreath product of symmetric group algebras
We consider the wreath product of two symmetric groups as a group of blocks permutations and we study its conjugacy classes. We give a polynomiality property for the structure coefficients of the center of the wreath product of symmetric group algebras. This allows us to recover an old result of Far...
Збережено в:
Дата: | 2021 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2021
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/188713 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | The center of the wreath product of symmetric group algebras / O. Tout // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 302–322. — Бібліогр.: 12 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-188713 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1887132023-03-12T01:28:59Z The center of the wreath product of symmetric group algebras Tout, O. We consider the wreath product of two symmetric groups as a group of blocks permutations and we study its conjugacy classes. We give a polynomiality property for the structure coefficients of the center of the wreath product of symmetric group algebras. This allows us to recover an old result of Farahat and Higman about the polynomiality of the structure coefficients of the center of the symmetric group algebra and to generalize our recent result about the polynomiality property of the structure coefficients of the center of the hyperoctahedral group algebra. 2021 Article The center of the wreath product of symmetric group algebras / O. Tout // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 302–322. — Бібліогр.: 12 назв. — англ. 1726-3255 DOI:10.12958/adm1338 2020 MSC: 05E10, 05E16, 20C30. http://dspace.nbuv.gov.ua/handle/123456789/188713 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We consider the wreath product of two symmetric groups as a group of blocks permutations and we study its conjugacy classes. We give a polynomiality property for the structure coefficients of the center of the wreath product of symmetric group algebras. This allows us to recover an old result of Farahat and Higman about the polynomiality of the structure coefficients of the center of the symmetric group algebra and to generalize our recent result about the polynomiality property of the structure coefficients of the center of the hyperoctahedral group algebra. |
format |
Article |
author |
Tout, O. |
spellingShingle |
Tout, O. The center of the wreath product of symmetric group algebras Algebra and Discrete Mathematics |
author_facet |
Tout, O. |
author_sort |
Tout, O. |
title |
The center of the wreath product of symmetric group algebras |
title_short |
The center of the wreath product of symmetric group algebras |
title_full |
The center of the wreath product of symmetric group algebras |
title_fullStr |
The center of the wreath product of symmetric group algebras |
title_full_unstemmed |
The center of the wreath product of symmetric group algebras |
title_sort |
center of the wreath product of symmetric group algebras |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2021 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/188713 |
citation_txt |
The center of the wreath product of symmetric group algebras / O. Tout // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 302–322. — Бібліогр.: 12 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT touto thecenterofthewreathproductofsymmetricgroupalgebras AT touto centerofthewreathproductofsymmetricgroupalgebras |
first_indexed |
2023-10-18T23:08:59Z |
last_indexed |
2023-10-18T23:08:59Z |
_version_ |
1796157375646793728 |