Common neighborhood spectrum of commuting graphs of finite groups

The commuting graph of a finite non-abelian group G with center Z(G), denoted by Гc(G), is a simple undirected graph whose vertex set is G\ Z(G), and two distinct vertices x and y are adjacent if and only if xy = yx. In this paper, we compute the common neighborhood spectrum of commuting graphs of s...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2021
Автори: Fasfous, W.N.T., Sharafdini, R., Nath, R.K.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2021
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/188716
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Common neighborhood spectrum of commuting graphs of finite groups / W.N.T. Fasfous, R. Sharafdini, R.K. Nath // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 1. — С. 33–48. — Бібліогр.: 24 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The commuting graph of a finite non-abelian group G with center Z(G), denoted by Гc(G), is a simple undirected graph whose vertex set is G\ Z(G), and two distinct vertices x and y are adjacent if and only if xy = yx. In this paper, we compute the common neighborhood spectrum of commuting graphs of several classes of finite non-abelian groups and conclude that these graphs are CN-integral.