Diagonal torsion matrices associated with modular data

Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group SL₂(Z). Cuntz (2007) defined isomorphic integral modular data. Here we discuss isomorphic integral and non-integral modular data as well as non-isomorphic bu...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2021
Автор: Singh, G.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2021
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/188721
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Diagonal torsion matrices associated with modular data / G. Singh // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 1. — С. 127–137. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group SL₂(Z). Cuntz (2007) defined isomorphic integral modular data. Here we discuss isomorphic integral and non-integral modular data as well as non-isomorphic but closely related modular data. In this paper, we give some insights into diagonal torsion matrices associated to modular data.