Diagonal torsion matrices associated with modular data

Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group SL₂(Z). Cuntz (2007) defined isomorphic integral modular data. Here we discuss isomorphic integral and non-integral modular data as well as non-isomorphic bu...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2021
Автор: Singh, G.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2021
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/188721
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Diagonal torsion matrices associated with modular data / G. Singh // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 1. — С. 127–137. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-188721
record_format dspace
spelling irk-123456789-1887212023-03-13T19:14:56Z Diagonal torsion matrices associated with modular data Singh, G. Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group SL₂(Z). Cuntz (2007) defined isomorphic integral modular data. Here we discuss isomorphic integral and non-integral modular data as well as non-isomorphic but closely related modular data. In this paper, we give some insights into diagonal torsion matrices associated to modular data. 2021 Article Diagonal torsion matrices associated with modular data / G. Singh // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 1. — С. 127–137. — Бібліогр.: 7 назв. — англ. 1726-3255 DOI:10.12958/adm1368 2020 MSC: Primary 05E40; Secondary 05E99, 81R05. http://dspace.nbuv.gov.ua/handle/123456789/188721 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group SL₂(Z). Cuntz (2007) defined isomorphic integral modular data. Here we discuss isomorphic integral and non-integral modular data as well as non-isomorphic but closely related modular data. In this paper, we give some insights into diagonal torsion matrices associated to modular data.
format Article
author Singh, G.
spellingShingle Singh, G.
Diagonal torsion matrices associated with modular data
Algebra and Discrete Mathematics
author_facet Singh, G.
author_sort Singh, G.
title Diagonal torsion matrices associated with modular data
title_short Diagonal torsion matrices associated with modular data
title_full Diagonal torsion matrices associated with modular data
title_fullStr Diagonal torsion matrices associated with modular data
title_full_unstemmed Diagonal torsion matrices associated with modular data
title_sort diagonal torsion matrices associated with modular data
publisher Інститут прикладної математики і механіки НАН України
publishDate 2021
url http://dspace.nbuv.gov.ua/handle/123456789/188721
citation_txt Diagonal torsion matrices associated with modular data / G. Singh // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 1. — С. 127–137. — Бібліогр.: 7 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT singhg diagonaltorsionmatricesassociatedwithmodulardata
first_indexed 2023-10-18T23:09:01Z
last_indexed 2023-10-18T23:09:01Z
_version_ 1796157376502431744