Diagonal torsion matrices associated with modular data
Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group SL₂(Z). Cuntz (2007) defined isomorphic integral modular data. Here we discuss isomorphic integral and non-integral modular data as well as non-isomorphic bu...
Збережено в:
Дата: | 2021 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2021
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/188721 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Diagonal torsion matrices associated with modular data / G. Singh // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 1. — С. 127–137. — Бібліогр.: 7 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-188721 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1887212023-03-13T19:14:56Z Diagonal torsion matrices associated with modular data Singh, G. Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group SL₂(Z). Cuntz (2007) defined isomorphic integral modular data. Here we discuss isomorphic integral and non-integral modular data as well as non-isomorphic but closely related modular data. In this paper, we give some insights into diagonal torsion matrices associated to modular data. 2021 Article Diagonal torsion matrices associated with modular data / G. Singh // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 1. — С. 127–137. — Бібліогр.: 7 назв. — англ. 1726-3255 DOI:10.12958/adm1368 2020 MSC: Primary 05E40; Secondary 05E99, 81R05. http://dspace.nbuv.gov.ua/handle/123456789/188721 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group SL₂(Z). Cuntz (2007) defined isomorphic integral modular data. Here we discuss isomorphic integral and non-integral modular data as well as non-isomorphic but closely related modular data. In this paper, we give some insights into diagonal torsion matrices associated to modular data. |
format |
Article |
author |
Singh, G. |
spellingShingle |
Singh, G. Diagonal torsion matrices associated with modular data Algebra and Discrete Mathematics |
author_facet |
Singh, G. |
author_sort |
Singh, G. |
title |
Diagonal torsion matrices associated with modular data |
title_short |
Diagonal torsion matrices associated with modular data |
title_full |
Diagonal torsion matrices associated with modular data |
title_fullStr |
Diagonal torsion matrices associated with modular data |
title_full_unstemmed |
Diagonal torsion matrices associated with modular data |
title_sort |
diagonal torsion matrices associated with modular data |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2021 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/188721 |
citation_txt |
Diagonal torsion matrices associated with modular data / G. Singh // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 1. — С. 127–137. — Бібліогр.: 7 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT singhg diagonaltorsionmatricesassociatedwithmodulardata |
first_indexed |
2023-10-18T23:09:01Z |
last_indexed |
2023-10-18T23:09:01Z |
_version_ |
1796157376502431744 |