Homotopy equivalence of normalized and unnormalized complexes, revisited

We consider the unnormalized and normalized complexes of a simplicial or a cosimplicial object coming from the DoldśKan correspondence for an idempotent complete additive category (kernels and cokernels are not required). The normalized complex is defined as the image of certain idempotent in the un...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2021
Автори: Lyubashenko, V., Matsui, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2021
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/188752
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Homotopy equivalence of normalized and unnormalized complexes, revisited / V. Lyubashenko, A. Matsui // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 2. — С. 253-266. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-188752
record_format dspace
spelling irk-123456789-1887522023-03-15T01:27:23Z Homotopy equivalence of normalized and unnormalized complexes, revisited Lyubashenko, V. Matsui, A. We consider the unnormalized and normalized complexes of a simplicial or a cosimplicial object coming from the DoldśKan correspondence for an idempotent complete additive category (kernels and cokernels are not required). The normalized complex is defined as the image of certain idempotent in the unnormalized complex. We prove that this idempotent is homotopic to identity via homotopy which is expressed via faces and degeneracies. Hence, the normalized and unnormalized complex are homotopy isomorphic to each other. We provide explicit formulae for the homotopy. 2021 Article Homotopy equivalence of normalized and unnormalized complexes, revisited / V. Lyubashenko, A. Matsui // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 2. — С. 253-266. — Бібліогр.: 7 назв. — англ. 1726-3255 DOI:10.12958/adm1879 2020 MSC: 18G31, 18N50 http://dspace.nbuv.gov.ua/handle/123456789/188752 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We consider the unnormalized and normalized complexes of a simplicial or a cosimplicial object coming from the DoldśKan correspondence for an idempotent complete additive category (kernels and cokernels are not required). The normalized complex is defined as the image of certain idempotent in the unnormalized complex. We prove that this idempotent is homotopic to identity via homotopy which is expressed via faces and degeneracies. Hence, the normalized and unnormalized complex are homotopy isomorphic to each other. We provide explicit formulae for the homotopy.
format Article
author Lyubashenko, V.
Matsui, A.
spellingShingle Lyubashenko, V.
Matsui, A.
Homotopy equivalence of normalized and unnormalized complexes, revisited
Algebra and Discrete Mathematics
author_facet Lyubashenko, V.
Matsui, A.
author_sort Lyubashenko, V.
title Homotopy equivalence of normalized and unnormalized complexes, revisited
title_short Homotopy equivalence of normalized and unnormalized complexes, revisited
title_full Homotopy equivalence of normalized and unnormalized complexes, revisited
title_fullStr Homotopy equivalence of normalized and unnormalized complexes, revisited
title_full_unstemmed Homotopy equivalence of normalized and unnormalized complexes, revisited
title_sort homotopy equivalence of normalized and unnormalized complexes, revisited
publisher Інститут прикладної математики і механіки НАН України
publishDate 2021
url http://dspace.nbuv.gov.ua/handle/123456789/188752
citation_txt Homotopy equivalence of normalized and unnormalized complexes, revisited / V. Lyubashenko, A. Matsui // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 2. — С. 253-266. — Бібліогр.: 7 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT lyubashenkov homotopyequivalenceofnormalizedandunnormalizedcomplexesrevisited
AT matsuia homotopyequivalenceofnormalizedandunnormalizedcomplexesrevisited
first_indexed 2023-10-18T23:09:05Z
last_indexed 2023-10-18T23:09:05Z
_version_ 1796157379820126208